Solving Quadratic Equations Using the Quadratic Formula

Quadratic Equation - An equation of the form $ax^2 + bx + c = 0$, where *a*, *b* and *c* are real numbers and $a \neq 0$.

Quadratic Formula - Used to solve a quadratic equation when factoring fails.

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Step 1: Set the equation equal to zero.

Step 2: Identify a, b and c.

~

x =

Step 3: Substitute a, b and c into the quadratic formula and solve for the variable.

Directions: Solve each quadratic equation by using the quadratic formula.

1.
$$2x^{2} + 5x = 12$$

 $-|z - 1z|$
 $2x^{2} + 5x - 1z = 0$
 $q = 2$ $b = 5$ $c = -12$
 $x = -5 \pm \sqrt{(5)^{2} - 4(z)(-1z)} = -5 \pm \sqrt{121} = -5 \pm (1)$
 $x = -5 \pm 11$ $x = -5 \pm 11$
 $x = -5 \pm 11$ $x = -5 \pm 11$

2.
$$x^{2}-6x+9=0$$

 $a=1$ $b=-4$ $c=9$
 $x = -b \pm \sqrt{b^{2}-4ac}$
 $x = \frac{-(-6) \pm \sqrt{(-6)^{2}-4(1)(9)}}{\sqrt{(-6)^{2}-4(1)(9)}} = \frac{6\pm \sqrt{6}}{2} = \frac{6}{2} = 3$
 $x = 3$

$$3. x^{2} - 10x = -13
+ 13 + 13
x^{2} - 10x + 13 = 0
a = 1 b = -10 c = 13
x = -(-10) \pm (-10)^{2} - 4(1)(13) = 10 \pm (-18) = (-16)^{2} - 4(1)(13) = 10 \pm (-18)^{2} - (-$$

4.
$$3x^{2} = 2(x+2)$$

 $3x^{2} = 2x + 4$
 $-2x - 4 - 2x - 4$
 $3x^{2} - 2x - 4 = 0$
 $a = 3$ $b = -2$ $c = -4$
 $x = -\frac{(-2)}{2} \pm \sqrt{(-2)^{2} - 4(3)(-4)} = 2 \pm \sqrt{52}$
 $x = -\frac{(-2)}{2} \pm \sqrt{(-2)^{2} - 4(3)(-4)} = 2 \pm \sqrt{52}$
 $x = \frac{2}{6} \pm \sqrt{13}$
 $x = \frac{2}{6} \pm \sqrt{13}$
 $x = \frac{2}{6} \pm \sqrt{13}$
 $x = \frac{2}{3} = \frac{1 \pm \sqrt{13}}{3}$

5.
$$2+2x-x^2=0$$

 $-x^2+2x+2=0$
 $a=-1$ $b=1$ $c=2$
 $x=\frac{-(2)\pm\sqrt{(2)^2-4(-1)(2)}}{2(-1)}=-\frac{2\pm\sqrt{12}}{-2}$ $\sqrt{12}=\sqrt{4+3}$
 $x=\frac{1}{-2}\pm\frac{1}{2\sqrt{3}}=\frac{1\pm\sqrt{3}}{-2}=\frac{1\pm\sqrt{3}}{-2}$

6.
$$(x+6)^{2} = -2x$$

 $(x+4)(x+4)(x+4) = -2x$
 $x^{2} + 6x + 6x + 36 = -2x$
 $x^{2} + 12x + 36 = -2x$
 $x^{2} + 12x + 36 = -2x$
 $x + 2x$
 $x^{2} + 14x + 36 = 0$
 $a = 1$ $b = 141$ $c = 36$
 $x = -144 \pm \sqrt{(14)^{2} - 4(1)(36)}$
 $x = -144 \pm \sqrt{52}$
 $x = -144 \pm \sqrt{52}$