$\underline{y \text { varies directly as } x}$

$$
y=k x
$$

y increases, x increases
y decreases, x decreases
\underline{y} varies inversely as x $y=\frac{k}{x}$ y increases, x decreases
y decreases, x increases
$k=$ constant of variation
$\underline{y \text { varies jointly as } x \text { and } z}$

$$
y=k x z
$$

y varies as the product of two or more quantities

1. x varies directly as y. Find x when $y=24$ and $k=3$.

$$
x=k \cdot y
$$

$$
x=3.24
$$

$$
x=72
$$

2. A varies directly as the square of B. Find A when $B=9$ and $k=\frac{3}{4}$.

3. x varies inversely as y. Find x when $y=30$ and $k=\frac{1}{2}$.

$$
\begin{aligned}
& x=\frac{K}{y} \\
& x=\frac{\frac{1}{2}}{30} \quad \frac{1}{2} \div \frac{30}{1}=\frac{1}{2} \cdot \frac{1}{30}=\frac{1}{60} \\
& x=\frac{1}{60}
\end{aligned}
$$

4. x varies jointly as y and z. Find x when $y=15, z=3$ and $k=\frac{2}{3}$.

$$
\begin{aligned}
& x=k \cdot y z \\
& x=\frac{2}{3} \cdot \frac{15}{1} \cdot \frac{3}{1} \\
& x=30
\end{aligned}
$$

5. A varies directly as B. and inversely as C. Find A when $B=5, C=20$ and $k=4$. L

$$
\begin{aligned}
& A=\frac{K \cdot B}{C} \\
& A=\frac{4 \cdot 5}{20} \\
& A=1
\end{aligned}
$$

6. U varies jointly as V and W. and inversely as the square of x. Find U when $V=6, W=7, x=9$ and $k=\frac{3}{2}$.

7. x varies directly as y. If $x=12$ when $y=3$, find x when $y=5$.

$$
k x=k \cdot y
$$

$$
\begin{array}{ll}
\frac{12}{3}=\frac{k \cdot 3}{3} & x=k \cdot y \\
k=4 & x=4.5 \\
k=20
\end{array}
$$

8. A varies inversely as the square of P. If $A=5$ when $P=5$, find A when $P=10$.

9. F varies jointly as M_{1} and M_{2} and inversely as d. If $F=30$ when $M_{1}=6, M_{2}=10$ and $d=\frac{2}{5}$, find F when $M_{1}=12, M_{2}=20$ and $d=\frac{4}{5}$.

* $F=\frac{k \cdot m_{1} \cdot m_{2}}{d}$

$$
\begin{aligned}
\frac{60 k}{60}=\frac{\left.L^{\prime}\right|^{\prime}}{5005} & F=\frac{K \cdot m_{1} \cdot m_{2}}{d} \\
K=\frac{1}{5} & F=\frac{\frac{1}{5} \cdot 12 \cdot 20}{\frac{4}{5}} \\
F & =48 \div \frac{4}{5}=48 \cdot \frac{12}{4} \\
F & =60
\end{aligned}
$$

10. The recommended dosage of a certain medication is directly proportional to a person's weight. If Laurie weighs 125 pounds and is given 2500 milligrams, find the recommended dosage for Larry who weighs 165 pounds.

$$
\begin{aligned}
& d=\text { dosage } \\
& w=\text { weight }
\end{aligned}
$$

$$
K=20
$$

Laurie
$w=125$
$d=2500$

$$
\begin{aligned}
& d=k \cdot w \\
& d=20 \cdot 165 \\
& d=3300 \mathrm{mg}
\end{aligned}
$$

11. If it takes 8 hours for 6 painters to paint a house, how long will it take 5 painters to paint a house of the same size?

$$
h=\text { hours }
$$

$p=$ painters

* inversely related
$* h=\frac{k}{p}$

$$
\begin{array}{ll}
p=5 & h=\frac{k}{p} \\
h= & h=\frac{48}{5}=9 \frac{3}{5} \text { hours }
\end{array}
$$

12. The intensity of light, I, varies inversely as the square of the distance, d. If the light intensity is 300 -foot candles at 25 feet, find the light intensity at 15 feet.
$* I=\frac{K}{d^{2}}$

$T=$
$d=15$

$I=\frac{187,500}{15^{2}}$
$I=\frac{187.500}{225}$
$K=187,500$
エニ 833.33 -foot candles
