Areas of Surfaces of Revolution

The area of a surface $f(x)$ rotated about the x-axis:

$$
S=\int_{a}^{b} 2 \pi \cdot \text { radius } \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x
$$

The area of a surface $g(y)$ rotated about the y-axis:

$$
S=\int_{c}^{d} 2 \pi \cdot \text { radius } \sqrt{1+\left(\frac{d x}{d y}\right)^{2}} d y
$$

Directions: For questions 1 through 3, find the area of the surface obtained by rotating the curve about the x-axis.

1. $y=\frac{1}{3} x^{3}, 0 \leq x \leq 2 \quad$ Radius $=y=\frac{1}{3} x^{3}$

$$
\begin{gathered}
y^{\prime}=x^{2} \\
\left(y^{\prime}\right)^{2}=x^{4}
\end{gathered}
$$

$$
2 \pi \int_{0}^{\frac{1}{3} x^{3}} \sqrt{1+x^{4}} d x=\frac{2 \pi}{3} \int_{0}^{2} x^{3} \sqrt{1+x^{4}} d x
$$

$$
d u=4 x^{3} d x
$$

$$
\frac{1}{4} d u=x^{3} d x
$$

$$
\left.\frac{2 \pi}{3} \cdot \frac{1}{4} \int_{0}^{2} \sqrt{u} d u=\frac{\pi}{6} \int_{0}^{2} u^{1 / 2}=\frac{\pi}{63} \cdot \frac{x^{1}}{3} u^{3 / 2}=\frac{\pi}{9}\left(1+x^{4}\right)^{3 / 2}\right]_{0}^{2}
$$

$$
\frac{\pi}{9}\left[\left(1+2^{4}\right)^{3 / 2}-(1+04)^{3 / 2}\right]=\frac{\pi}{9}\left[17^{3 / 2}-1^{3 / 2}\right]=\left[\begin{array}{l}
\frac{\pi}{9}(17 \sqrt{17}-1) \\
\text { OR } \\
24.1179
\end{array}\right.
$$

$$
\sqrt{17} \cdot \sqrt{17} \cdot \sqrt{17}
$$

$17 \sqrt{17}$
2. $y=\sqrt{x},\left[\frac{3}{4}, 2\right]$

Radius $=y=\sqrt{x}$

$$
y=x^{1 / 2}
$$

$$
y^{\prime}=\frac{1}{2} x^{-1 / 2}=\frac{1}{2 \sqrt{x}}
$$

$$
\left(y^{\prime}\right)^{2}=\left(\frac{1}{2 \sqrt{x}}\right)^{2}=\frac{1}{4 x}
$$

$2 \pi \int_{3 / 4}^{2} \underbrace{\sqrt{x}} \sqrt{1+\frac{1}{4 x}} d x=2 \pi \int_{3 \mid 4}^{2} \sqrt{x\left(1+\frac{1}{4 x}\right)} d x=2 \pi \int_{3 / 4}^{2} \sqrt{x+\frac{1}{4}} d x$

$$
u=x+\frac{1}{4}
$$

$$
d u=d x
$$

$$
\begin{aligned}
& \left.2 \pi \int_{3 / 4}^{2} \sqrt{u} d u=2 \pi \int_{3 / 4}^{2} u^{1 / 2} d u=2 \pi \cdot \frac{2}{3} u^{3 / 2}=\frac{4 \pi}{3}\left(x+\frac{1}{4}\right)^{3 / 2}\right]_{3 / 4}^{2} \\
& \frac{4 \pi}{3}\left[\left(2+\frac{1}{4}\right)^{3 / 2}-\left(\frac{3}{4}+\frac{1}{4}\right)^{3 / 2}\right]=\frac{4 \pi}{3}\left[\left(\frac{9}{4}\right)^{3 / 2}-1\right]^{3 / 2} \\
& \frac{4 \pi}{3}\left(\frac{27}{8}-1\right)=\frac{4 \pi}{3}\left(\frac{27-8}{8}\right)=\frac{4 \pi}{3}\left(\frac{19}{8 / 2}\right)=\frac{19 \pi}{6} \text { or } 9.948
\end{aligned}
$$

3. $x=\frac{1}{3}\left(y^{2}+2\right)^{\frac{3}{2}}, 1 \leq y \leq 2$

Radius $=y$

$$
\begin{aligned}
& x^{\prime}=\frac{1}{2} \cdot \frac{3}{2}\left(y^{2}+2\right)^{\prime \prime 2}-2 y=y \sqrt{y^{2}+2} \\
& \left(x^{\prime}\right)^{2}=\left(y \sqrt{y^{2}+2}\right)^{2}=y^{2}\left(y^{2}+2\right)=y^{4}+2 y^{2} \\
& 2 \pi \int_{1}^{2} y \sqrt{1+y^{4}+2 y^{2}} d y=2 \pi \int_{1}^{2} y \sqrt{y^{4}+2 y^{2}+1} d y=2 \pi \int_{1}^{2} y \sqrt{\left(y^{2}+1\right)^{2}} d y \\
& 2 \pi \int_{1}^{2} y\left(y^{2}+1\right) d y=2 \pi \int_{1}^{2} y^{3}+y d y=2 \pi\left[\frac{y^{4}}{4}+\frac{y^{2}}{2}\right]_{1}^{2} \\
& 2 \pi\left[\left(\frac{2^{4}}{4}+\frac{2^{2}}{2}\right)-\left(\frac{1^{4}}{4}+\frac{1^{2}}{2}\right)\right]=2 \pi\left[\frac{16}{4}+\frac{4}{2}-\frac{1}{4}-\frac{1}{2}\right] \\
& 2 \pi\left[4+2-\frac{1}{4}-\frac{1}{2}\right]=2 \pi\left[6-\frac{1}{4}-\frac{1}{2}\right]=2 \pi\left[\frac{24-1-2}{4}\right] \\
& 1 \\
& \left.2 \pi\left[\frac{21}{4 x_{2}}\right]=\frac{21 \pi}{2} \text { OR } 32.9867\right]
\end{aligned}
$$

Directions: For questions 4 and 5, find the area of the surface obtained by rotating the curve about the y-axis.

$$
\begin{aligned}
& \text { 4. } y=\sqrt[3]{x}+1,[0,4] \\
& y=x^{1 / 3}+1 \\
& \text { Radius }=x \\
& y^{\prime}=\frac{1}{3} x^{-2 / 3}=\frac{1}{3 x^{2 / 3}} \\
& \left(y^{\prime}\right)^{2}=\left(\frac{1}{3 x^{2 / 3}}\right)^{2}=\frac{1}{9 x^{4 / 3}} \\
& 2 \pi \int_{0}^{4} \frac{x}{R} \sqrt{1+\frac{1}{9 x^{4 / 3}}} d x=2 \pi \int_{0}^{4} x \sqrt{\frac{9 x^{413}+1}{9 x^{4 / 3}}} d x \\
& 2 \pi \int_{0}^{4} \frac{x}{3 x^{2 / 3}} \sqrt{9 x^{4 / 3}+1} d x=\frac{2 \pi}{3} \int_{0}^{4} x^{1 / 3} \sqrt{9 x^{4 / 3+1}} d x \\
& u=9 x^{4 / 3}+1 \\
& d u=\frac{36}{3} x^{1 / 3} d x \\
& d u=12 x^{1 / 3} d x \\
& \frac{1}{12} d u=x^{1 / 3} d x \\
& \left.\frac{2 \pi}{3} \cdot \frac{1}{2 x} \int_{6}^{4} \sqrt{u} d u=\frac{\pi}{18} \int_{0}^{4} u^{1 / 2} d u=\frac{\pi}{18} \cdot \frac{2 x}{9} u^{3 / 2}=\frac{\pi}{27}\left(9 x^{4 / 3}+1\right)^{3 / 2}\right]_{0}^{4} \\
& \frac{\pi}{27}\left[\left(9 \cdot 4^{4 / 3}+1\right)^{3 / 2}-\left(9 \cdot 0^{4 / 3}+1\right)^{3 / 2}\right]=\frac{\pi}{27}\left[(9 \cdot 4 \sqrt[3]{4}+1)^{3 / 2}-1^{3 / 2}\right] \\
& 4^{4 / 3}=\sqrt[3]{256}=\sqrt[3]{64 \cdot 4}=4 \sqrt[3]{4} \\
& \frac{\pi}{27}\left[(36 \sqrt[3]{4}+1)^{3 / 2}-1\right] \text { OR 51.4743 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 5. } x=\frac{y^{2}-\ln y}{2 \sqrt{2}}, 1 \leq y \leq 3 \\
& x=\frac{1}{2 \sqrt{2}}\left(y^{2}-\ln y\right) \\
& y=\frac{x^{2}-1 N x}{2 \sqrt{2}} \\
& (1,1 / 2) \quad(1 / 2,1) \\
& (2,1.1)(1.1,2) \\
& x^{\prime}=\frac{1}{2 \sqrt{2}}\left(2 y-\frac{1}{y}\right)=\frac{1}{2 \sqrt{2}}\left(\frac{2 y^{2}-1}{y}\right) \\
& \left(x^{\prime}\right)^{2}=\left(\frac{2 y^{2}-1}{2 \sqrt{2} y}\right)^{2}=\frac{4 y^{4}-4 y^{2}+1}{8 y^{2}} \\
& 2 \pi \int_{1}^{3} \frac{y^{2}-\ln y}{1-2 \sqrt{2}} \sqrt{1+\frac{4 y^{4}-4 y^{2}+1}{8 y^{2}}} d y \\
& \frac{\pi}{\sqrt{2}} \int_{1}^{3}\left(y^{2}-\ln y\right) \sqrt{\frac{8 y^{2}+4 y^{4}-4 y^{2}+1}{8 y^{2}}} d y=\frac{\pi}{\sqrt{2}} \int_{1}^{3}\left(y^{2}-\ln y\right) \sqrt{\frac{4 y^{4}+4 y^{2}+3}{8 y^{2}}} d y \\
& \frac{\pi}{\sqrt{2}} \int_{1}^{3}\left(y^{2}-\ln y\right) \sqrt{\frac{\left(2 y^{2}+1\right)^{2}}{8 y^{2}}} d y=\frac{\pi}{\sqrt{2}} \int_{1}^{3}\left(y^{2}-\ln y\right) \frac{\left(2 y^{2}+1\right)}{2 \sqrt{2} y} d y \\
& \frac{\pi}{\sqrt{2}} \cdot \frac{1}{2 \sqrt{2}} \int_{1}^{3} \frac{\left(y^{2}-\ln y\right)\left(2 y^{2}+1\right)}{y} d y=\frac{\pi}{4} \int_{1}^{3} \frac{2 y^{4}+y^{2}-2 y^{2} \ln y-1 N y}{y} d y \\
& \frac{\pi}{4} \int_{1}^{3} \frac{2 y^{4}}{y}+\frac{y^{2}}{y}-\frac{2 y^{2} \ln y}{y}-\frac{\ln y}{y} d y=\frac{\pi}{4} \int_{1}^{3} 2 y^{3}+y-2 y \ln y-\ln y d y \\
& \frac{\pi}{4}\left[\int_{1}^{3} 2 y^{3}+y d y-2 \int_{1}^{3} y \ln y d y-\int_{1}^{3} \frac{\ln y}{y} d y\right. \\
& \text { Integration } \\
& \text { by Parts } \\
& u=\ln y \quad d u=y d y \\
& d u=\frac{1}{y} d y \quad v=\frac{y^{2}}{2} \\
& \frac{\pi}{4}\left[\frac{2 y^{4}}{4}+\frac{y^{2}}{2}-2\left(\frac{y^{2} \ln y}{2}-\frac{1}{2} \int \frac{y^{2}}{y} d y\right)-\int u d u\right] \\
& \frac{\pi}{4}\left[\frac{y^{4}}{2}+\frac{y^{2}}{2}-y^{2} \ln y+\int y d y-\frac{u^{2}}{2}\right] \\
& \frac{\pi}{4}\left[\frac{y^{4}}{2}+\frac{y^{2}}{2}-y^{2} \ln y+\frac{y^{2}}{z}-\frac{(\ln y)^{2}}{2}\right]_{1}^{3} \\
& \frac{\pi}{4}\left[\left(\frac{81}{2}+\frac{9}{2}-9 \ln 3+\frac{9}{2}-\frac{(\ln 3)^{2}}{2}\right)-\left(\frac{1}{2}+\frac{1}{2}-\left\lvert\, N 1+\frac{1}{2}-\frac{(|n|)^{2}}{2}\right.\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\pi}{4}\left[\frac{99}{2}-9 \ln 3-\frac{(\ln 3)^{2}}{2}-\frac{3}{2}\right]=\frac{\pi}{4}\left[\frac{96}{2}-\frac{18 \ln 3}{2}-\frac{(\ln 3)^{2}}{2}\right] \\
& \frac{\pi}{8}\left[96-18 \ln 3-(\ln 3)^{2}\right] \text { OR } 29.4595
\end{aligned}
$$

