

Horizontal Line Test - Determines if the function is one-to-one.

not a function

One-to-One Function - A graph that passes both the vertical and horizontal line tests. The graph is a function and it has an inverse.

Monotonic Function - A function that is always increasing or always decreasing.

$$
\begin{aligned}
& f(x)=x^{2}-2 \\
& f^{\prime}(x)=2 x \\
& f^{\prime}(-1)=-2 \\
& f \cdot(1)=2
\end{aligned}
$$

mong tonic

If $f(x)$ and $g(x)$ are inverse functions, then $f(g(x))=g(f(x))=x$.

$$
\begin{array}{ll}
f(x)=x^{3} \\
g(x)=\sqrt[3]{x} & f(g(x))=(\sqrt[3]{x})^{3}=x \\
& g(f(x))=\sqrt[3]{x^{3}}=x
\end{array}
$$

Directions: For questions 1 through 7, determine if the function has an inverse.

1. $f(x)=-3 x+1$

$$
f \cdot(x)=-3
$$

$D: R$
$f(x)<0$
Decreasing monotonic Has an inverse.

2. $f(x)=\frac{x+1}{x-1}$
$D: ~ x \neq 1$

$$
\begin{aligned}
& f^{\prime}(x)=\frac{(x-1)-1(x+1)}{(x-1)^{2}} \\
& f^{\prime}(x)=\frac{x-1-x-1}{(x-1)^{2}} \\
& f^{\prime}(x)=\frac{-2}{(x-1)^{2}} \\
& f \cdot(x)<0
\end{aligned}
$$

Decreasing, monotonic, has an inverse
3. $f(x)=\sqrt{2-x}$

$$
\begin{aligned}
& 2-x \geq 0 \\
& 2 \geq x \\
& x \leq 2 \\
& D: x \leq 2
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=(2-x)^{1 / 2} \\
& f \cdot(x)=\frac{1}{2}(2-x)^{-1 / 2}(-1) \\
& f \cdot(x)=\frac{-1}{2 \sqrt{2-x}}
\end{aligned}
$$

$$
f \cdot(x)<0
$$

Decreasing, monotonic, has an inverse
4. $f(x)=2 x^{2}-3$
$D: \mathbb{R}$

$$
\begin{aligned}
& f(x)=4 x \\
& f \cdot(-1)=-4 \\
& f^{\prime}(1)=4
\end{aligned}
$$

Not monotonic Does not have

1		\uparrow

5. $f(x)=\ln x$

$$
\begin{aligned}
& f^{\prime}(x)=\frac{1}{x} \\
& f^{\prime}(x)>0, x>0 \\
& \text { ln creasing } \\
& \text { Monotonic } \\
& \text { Has an inverse }
\end{aligned}
$$

6. $f(x)=x^{3}-x+2$

$$
\begin{aligned}
& f^{\prime}(x)=3 x^{2}-1 \\
& f^{\prime}(0)=-1 \quad 1 \\
& f^{\prime}(2)=11
\end{aligned}
$$

Not monotonic Does not have
 an inverse
7. $f(x)=\tan x$

Asymptotes: $\frac{\pi}{2}, \frac{3 \pi}{2}, \frac{5 \pi}{2}, \ldots \ldots . \frac{(2 N-1) \pi}{2}$

$$
D: x \neq \frac{(2 N-1) \pi}{2}
$$

$$
\begin{aligned}
& f(x)=\sec ^{2} x \\
& f \cdot(x)>0 \\
& \text { Increasing, monotonic }, \text { has } \\
& \text { an inverse } \quad\left(\frac{(2 n-1) \pi}{2}, \frac{(2 n+1) \pi}{2}\right)
\end{aligned}
$$

Directions: For questions 8 through 12, find the inverse of each function.
8. $f(x)=-3 x+1$

$$
\begin{aligned}
& y=-3 x+1 \\
& x=-3 y+1 \\
& x-1=-3 y \\
& y=\frac{x-1}{-3} \\
& y=-\frac{1}{3} x+\frac{1}{3} \\
& f^{-1}(x)=-\frac{1}{3} x+\frac{1}{3}
\end{aligned}
$$

9. $f(x)=\frac{3 x+1}{2 x-1}$

10. $f(x)=\sqrt{2-x}$
$2-x \geq 0$
$2 \geq x$
$D: x \leqslant 2$
$R: y \geq 0$

$$
\begin{aligned}
& y=\sqrt{2-x} \\
& (x)^{2}=(\sqrt{2-y})^{2} \\
& x^{2}=2-y \\
& y+x^{2}=2 \\
& y=-x^{2}+2 \\
& f^{-1}(x)=-x^{2}+2, x \geq 0
\end{aligned}
$$

11. $f(x)=2 x^{2}-3, x \geq 0$

$$
\begin{aligned}
& y=2 x^{2}-3 \\
& x=2 y^{2}-3 \\
& 2 y^{2}=x+3 \\
& \sqrt{y^{2}} \approx \sqrt{\frac{x+3}{2}} \\
& y= \pm \sqrt{\frac{x+3}{2}} \\
& f^{-3}(x)=\sqrt{\frac{x+3}{2}}
\end{aligned}
$$

12. $f(x)=\ln x$

$$
\begin{aligned}
& y=\ln x \\
& x=\ln y \\
& e^{x}=y \\
& y=e^{x} \\
& f^{-1}(x)=e^{x}
\end{aligned}
$$

Directions: For question 13, show that the functions are inverses of each other.

$$
\begin{aligned}
& \text { 13. } f(x)=\frac{1}{x-2}+1 \\
& g(x)=\frac{2 x-1}{x-1} \\
& f(g(x))=\frac{1}{\left(\frac{2 x-1}{x-1}\right)-\frac{2}{1 \cdot(x-1)}}+1=\frac{1}{\frac{2 x-1-2(x-1)}{x-1}}+1=\frac{1}{\frac{2 x-1-2 x+2}{x-1}}+1 \\
& =\frac{1}{\frac{1}{x-1}}+1=\frac{x-1}{1}+1=\frac{x-1+1}{\frac{1}{x-1}}+\frac{1}{\left(\frac{1}{x-2}+1\right)-1}=\frac{1}{x-2}+2-1-1 \\
& g(f(x))=\frac{2}{x-2}+\frac{2}{x-2}+\frac{1}{1} \cdot(x-2) \\
& =\frac{2+1(x-2)}{x-2} \\
& \frac{1}{x-2}
\end{aligned}
$$

Derivative of the Inverse Function: $\left(f^{-1}\right)^{\prime}(x)=\frac{1}{f^{\prime}(g(x))}$
Steps to find the derivative of the inverse at $x=a$.

1. Set $f(x)$ equal to a and solve for x.
2. Find $f^{\prime}(x)$ at the value of x found in step 1 .
3. Take the recriprocal of the value found in step 2.

Directions: For questions 14 and 15, find $\left(f^{-1}\right)^{\prime}(a)$.
14. $f(x)=\frac{\ln e^{3 x}}{x-1}, \quad a=2$

$$
f(x)=\frac{3 x}{x-1}
$$

Step 1: $f(x)=2$
Step 2: $f^{\prime}(x)=\frac{3(x-1)-1(3 x)}{(x-1)^{2}}$

$3 x=2(x-1)$

$$
f^{\prime}(x)=\frac{3 x-3-3 x}{(x-1)^{2}}
$$

$3 x=2 x-2$
$x=-2$

$$
f(x)=\frac{-3}{(x-1)^{2}}
$$

$f^{\prime}(-2)=\frac{-3}{(-2-1)^{2}}$
$f \cdot(-2)=\frac{-3}{(-3)^{2}}$

$$
f^{\prime}(-2)=\frac{-3}{9}
$$

$$
f^{\prime}(-2)=-\frac{1}{3}
$$

15. $f(x)=x^{3}-x^{2}+2 x+2, \quad a=4$

Step): $f(x)=4$
Step 2: $f^{\prime}(x)=3 x^{2}-2 x+2$

$$
\begin{aligned}
& x^{3}-x^{2}+2 x+2=4 \\
& x^{3}-x^{2}+2 x-2=0
\end{aligned}
$$

Factor by Gouping

$$
\begin{aligned}
& x^{2}(x-1)+2(x-1)= \\
& \left(x^{2}+2\right)(x-1)=0
\end{aligned}
$$

$$
\begin{aligned}
& x^{2}+2=0 \\
& \sqrt{x^{2}}=\sqrt{-2}
\end{aligned}
$$

$$
x-1=0
$$

$$
x=1
$$

$$
x= \pm \sqrt{-2}
$$

$x= \pm i \sqrt{2}$

