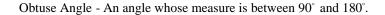
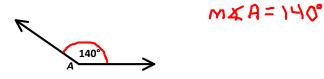
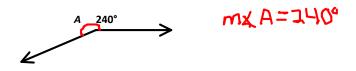

Angle Measure

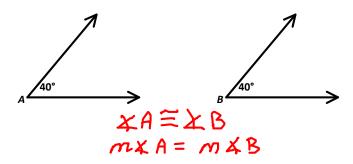
Angle - A figure consisting of two noncollinear rays with a common endpoint.

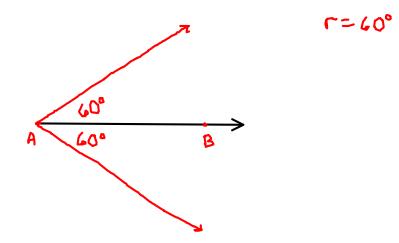


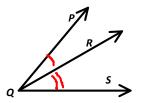

Acute Angle - An angle whose measure is between 0° and $90^{\circ}.$

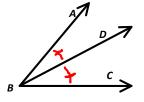
Right Angle - An angle whose measure is 90° .

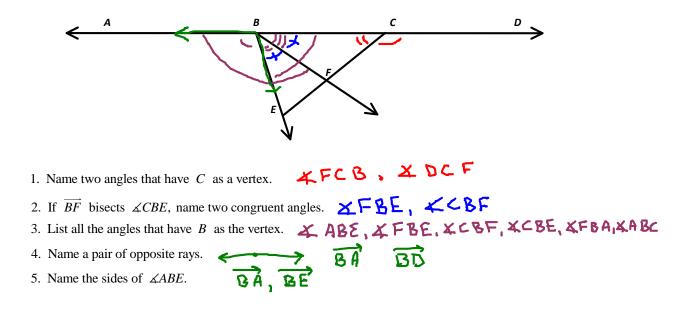


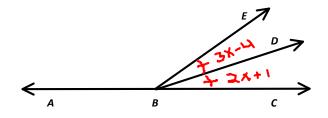

Straight Angle - An angle whose measure is 180°.


Reflex Angle - An angle whose measure is between 180° and 360° .

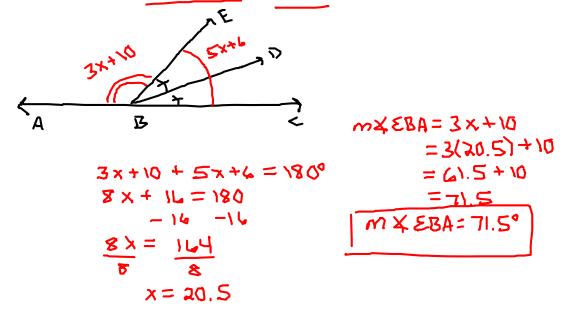

Congruent Angles - Angles that have the same measure.


<u>Protractor Postulate</u> - Given \overline{AB} and a number r between 0° and 180°, there is exactly one ray with endpoint A, extending on either side of \overline{AB} , such that the measure of the angle formed is r.

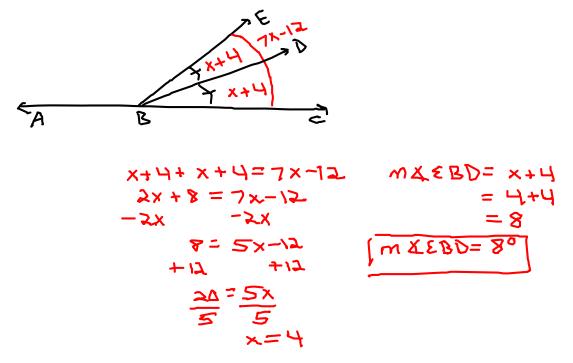

Angle Addition Postulate - If R is the interior of $\measuredangle PQS$, then $m\measuredangle PQR + m\measuredangle RQS = m\measuredangle PQS$.


Angle Bisector - \overrightarrow{BD} is the bisector of $\measuredangle ABC$ if D is in the interior of the angle and $\measuredangle ABD \cong \measuredangle CBD$.

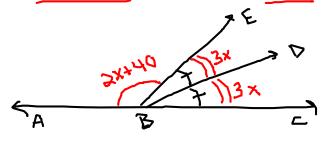
Directions: Refer to the figure below for questions 1-5.


Directions: Refer to the figure below for questions 6–10. \overrightarrow{BA} and \overrightarrow{BC} are opposite rays and \overrightarrow{BD} bisects $\measuredangle CBE$.

6. If $m \measuredangle EBD = 3x - 4$ and $m \measuredangle DBC = 2x + 1$, find $m \measuredangle EBD$.

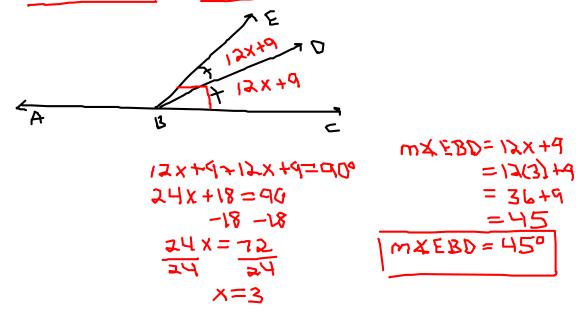

$$3x - 4 = 2x + 1 \quad m \angle EBD = 3x - 4 \\ -2x \quad -2x \quad = 3(5) - 4 \\ x - 4 = 1 \quad = 11^{\circ} \\ +4 + 4 \quad m \angle EBD = 11^{\circ} \\ x = 5 \quad = 5$$

7. If $m \measuredangle EBC = 5x + 6$ and $m \measuredangle EBA = 3x + 10$, find $m \measuredangle EBA$.



8. If $m \measuredangle DBC = x + 4$ and $m \measuredangle EBC = 7x - 12$, find $m \measuredangle EBD$.

8. If $m \measuredangle DBC = x + 4$ and $m \measuredangle EBC = 7x - 12$, find $m \measuredangle EBD$.



9. If $m \measuredangle ABE = 2x + 40$ and $m \measuredangle EBD = 3x$, find $m \measuredangle ABE$.

$$\frac{2x + 40 + 3x + 3x = 180^{\circ}}{8x + 40 = 180}$$

= 40 - 40
$$\frac{8x = 140}{8}$$

= 17.5

 $m \& ABE = 1 \times +40$ = 2(17.5) + 40= 35 + 40= 75 $m\& ABE = 75^{\circ}$ 10. If $m \measuredangle EBC$ is a right angle and $m \measuredangle DBC = 12x + 9$, find $m \measuredangle EBD$.

