Classifying Triangles By Sides

Scalene - No sides are congruent

Classifying Triangles By Angles
Acute - All
angles are acute

Right - One angle is right

Obtuse - One angle is obtuse

Isosceles - At least two sides are congruent

base angles

Equilateral - All sides are congruent

Equiangular - All angles are congruent

Directions: Classify the triangle by its angles and by its sides.

7. An isosceles triangle is \qquad sometimes an equilateral triangle.

8. An obtuse triangle is \qquad some an isosceles triangle.

9. The acute angles of a right triangle are
 annoy 5 complementary.

10. A triangle NRN has a right angle and an obtuse angle.

11. $\triangle A B C$ is an isosceles triangle and $\measuredangle B$ is the vertex. Find the length of each side if $A B=3 x+10, B C=4 x-4$ and $A C=6 x$

$$
\begin{gathered}
A B=B C \\
3 / x+10=4 x-4 \\
-3 x+3 x \\
10=x-4 \\
+4 \\
x=14
\end{gathered}
$$

$$
\begin{aligned}
& A B=3 x+10=3(14)+10=42+10=52 \\
& B C=4 x-4=4(14)-4=56-4=52 \\
& A C=6 x=6(14)=84
\end{aligned}
$$

12. $\triangle H O T$ is an equilateral triangle. Find the length of each side if $H O=\frac{1}{2}(x+4)$ and $H T=1.5 x-4$.

$$
\begin{aligned}
H \sigma & =\frac{1}{2}(6+4) \\
& =\frac{1}{2}(10) \\
& =5 \\
H T & =1.5(6)-4 \\
& =9-4 \\
& =5 \\
0 & =5
\end{aligned}
$$

13. If $A(-1,3), B(18,1)$ and $C(2,-5)$, determine if $\triangle A B C$ is a right triangle.

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

AB: $A(-1,3) B(18,1)$

$$
\begin{aligned}
d & =\sqrt{(18--1)^{2}+(1-3)^{2}} \\
& =\sqrt{\left.(18)^{2}+8-2\right)^{2}} \\
& =\sqrt{36)+4} \\
& =\sqrt{365}
\end{aligned}
$$

$$
\begin{aligned}
& A C: A(-1,3) C\left(\alpha_{1}-5\right) \\
& x_{1} y_{1} x_{2} y_{2} \\
& d= \sqrt{(2--1)^{2}+(-5-3)^{2}} \\
&= \sqrt{(3)^{2}+\left(-85^{2}\right.} \\
&= \sqrt{9+64} \\
&= \sqrt{73}
\end{aligned}
$$

$$
\begin{aligned}
& B C: \quad B(18,1) \quad C\left(z_{1},-5\right) \\
& \left.x, y_{1}\right) \quad x_{2} y_{2} \\
& d=\sqrt{(-5-1)^{2}+(2-18)^{2}} \\
& =\sqrt{(-6)^{2}+(-66)^{2}} \\
& =\sqrt{36+256} \\
& =\sqrt{292}
\end{aligned}
$$

$$
A B=\sqrt{365} \sqrt{365} \quad A C=\sqrt{73} \quad B C=\sqrt{292}
$$

Sis

$$
\begin{gathered}
a^{2}+b^{2}=c^{2} \\
(\sqrt{292})^{2}+(\sqrt{73})^{2}=(\sqrt{365})^{2} \\
292+73=365 \\
36=365
\end{gathered}
$$

$\triangle A B C$ is a right \triangle

