
Angles of Polygons

Polygon - A plane figure that meets the following conditions:

- 1. It is formed by three or more segments called sides (no two sides with a common endpoint are collinear).
- 2. Each side intersects exactly two other sides, one at each endpoint.

Regular Polygon - A polygon with congruent sides and congruent angles.

Number of Sides	Polygon
3	Triangle
4	Quadrilateral
5	Pentagon
6	Hexagon
7	Heptagon
8	Octagon
9	Nonagon
10	Decagon
12	Dodecagon
n	n-gon
20	20-90N

Sum of the measures of the interior angles of a convex polygon: $(n-2)180^{\circ}$

Each interior angle of a regular polygon:
$$\frac{(n-2)180^{\circ}}{n}$$

Sum of the measures of the exterior angles of a convex polygon: 360°

Each exterior angle of a regular polygon:
$$\frac{360^{\circ}}{n}$$

1. Find the sum of the measures of the interior angles of each convex polygon.

b)
$$2m$$
-gon $\aleph = 2\kappa$

2. The sum of the measures of the interior angles of a convex polygon is 720° . Find the number of sides.

$$(N-2) 180 = 720$$

$$180N - 360 = 720$$

$$1360 + 360$$

$$180N = 1080$$

$$180N = 1080$$

$$180$$

$$180 = 1080$$

$$180$$

$$180 = 1080$$

$$180$$

3. The measure of each exterior angle of a regular polygon is given. Find the number of sides of the polygon.

$$360 - 72$$
 $72N = 360$
 72
 $72 = 5$
 $N = 5$

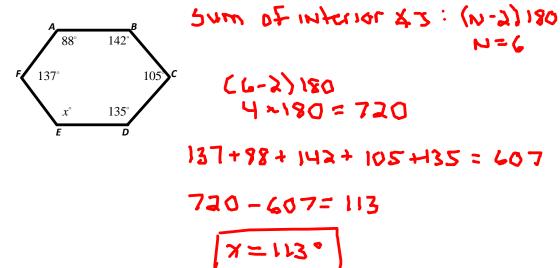
4. The measure of each interior angle of a regular polygon is given. Find the number of sides in each polygon.

$$(N-2)180$$
 $144N = 180(7-144N = 180N - 180$

$$(N-2)180 = 176.4$$

$$176.4N = (N-2)180$$

$$176.4N = 190N - 360$$

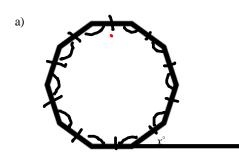

$$-180 N - 190 N$$

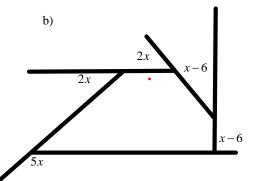
$$-3.6N = -360$$

$$-3.6 N = -3.6$$

$$N = 100$$

5. Find the value of *x*.


6. Find the measure of each angle.


$$\int_{E}^{A} \frac{3x+9}{3x^{2}} \frac{3x}{x+7} = \int_{E}^{A} \frac{3(5+1)+9=171}{2x-4} = \frac{171}{2x-4} = \frac{171}{2x-1} = \frac{171}$$

7. The measures of the interior angles of a pentagon are x, 3x-4, 2x+2, 6x-8 and 2x+4. Find the measure of each angle.

$$(N-2)180^{\circ}$$
 $(N-2)180^{\circ}$
 $(5-2)180$
 $(5-2)180$
 $(5-2)180$
 $(5-2)180$

8. Find the value of *x*.

Each exterior x = 360

$$\frac{300}{300} = 30^{\circ} | x = 30^{\circ}$$

$$\frac{1 \times 372}{11}$$

$$X = \frac{372}{11}$$
or $33\frac{4}{11}$