Graphing Parabolas

Standard Form

$$y = ax^2 + bx + c$$

vertex:
$$x = -\frac{b}{2a}$$

$$y = f(x)$$

axis of symmetry:
$$x = -\frac{b}{2a}$$

$$x$$
-intercept: set y equal to zero and solve for x y -intercept: set x equal to zero and solve for y

1. Find the vertex, axis of symmetry and intercepts of each function. Sketch the graph of each parabola.

a)
$$y = x^2 + 2x - 8$$

b)
$$y = x^2 - 2x + 1$$

c)
$$y = x^2 + 4$$

Vertex Form

 $y = a(x-h)^2 + k$

vertex: (h,k)

axis of symmetry: x = h

Transformations of $y = x^2$

2.	Find the vertex	and axis of s	vmmetry of	each function.	Sketch the gr	aph of each	parabola

a)
$$y = (x-1)^2 + 5$$

b)
$$y = -(x+2)^2$$

c)
$$y = 3(x-1)^2 + 4$$

d)
$$y = -\frac{1}{2}x^2 + 1$$

