Long Division and Synthetic Division

Long Division

1. Divide $2x^4 + 3x^3 - 6x^2 + 8x + 1$ by $x^2 + 3$.

2. Divide x^3+8 by x+2.

3.	Divide	$6x^3 + 19x^3$	$^{2}-116x-84$	by $3x + 2$	2. Use the result to factor the polynomial completely.

<u>Synthetic Division</u> - A method used to divide polynomials when the divisor is of the form (x - k).

4. Divide $3x^3 + 6x^2 - x + 4$ by x - 4.

5. Divide $-4x^5 + 2x^3 + 4x^2 - x - 1$ by x + 2.

6. Use synthetic division to show that (x-2) is a factor of $3x^3 - 7x^2 - 2x + 8$. Use the result to find the remaining factors of the function.