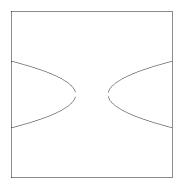
Conic Sections -Hyperbolas and Classifying Conics

Standard Form for the Equation of a Hyperbola

Horizontal Hyperbola

$$\frac{(x-h)^{2}}{a^{2}} - \frac{(y-k)^{2}}{b^{2}} = 1$$

Asymptotes:
$$y - k = \pm \frac{b}{a}(x - h)$$



 \boldsymbol{a} is always in the denominator of the positive fraction $\operatorname{Center} = \left(\boldsymbol{h}, \boldsymbol{k} \right)$

Vertices: a units from the center

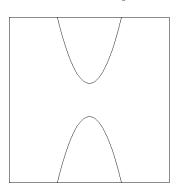
Foci: $c^2 = a^2 + b^2$

Eccentricity: $e = \frac{c}{a}$

Vertical Hyperbola

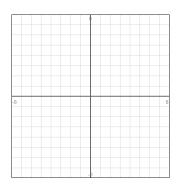
$$\frac{(y-k)^{2}}{a^{2}} - \frac{(x-h)^{2}}{b^{2}} = 1$$

Asymptotes:
$$y - k = \pm \frac{a}{b}(x - h)$$

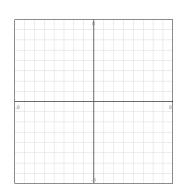


1. Find the center, vertices, foci, eccentricity and equations of the asymptotes of the hyperbola and sketch its graph.

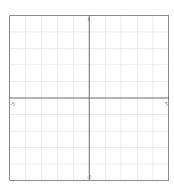
a)
$$\frac{(x-1)^2}{9} - \frac{y^2}{25} = 1$$



b)
$$-4x^2 + 24x + y^2 + 4y - 41 = 0$$

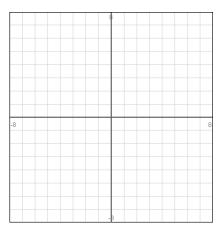


c)
$$16y^2 - x^2 + 2x + 64y + 63 = 0$$

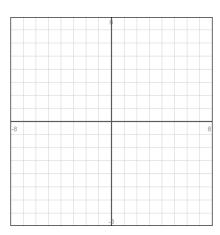


2. Find the standard form of the equation of the hyperbola.

a) Vertices: (2,3) and (2,-3)Foci: (2,5) and (2,-5)

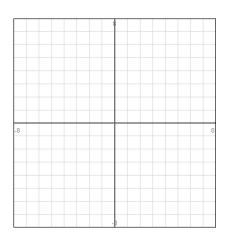


b) Vertices: (3,-5) and (3,1)Asymptotes: y = 2x - 8 and y = -2x + 4



c) Vertices: (-2,1) and (2,1)

Passes through the point: (8,4)



Classifying Conics from General Equations

Circle - x^2 and y^2 have the same coefficients

Parabola - only x^2 or y^2

Ellipse - x^2 and y^2 have different coefficients but are the same sign

Hyperbola - x^2 and y^2 have different signs

3. Classify each of the following conic sections.

a)
$$4x^2 - y^2 - 4x + 3 = 0$$

b)
$$4x^2 + 3y^2 - 14x + 3y = -7$$

c)
$$-2x^2 - 2y^2 - 16x + 15 = 0$$

d)
$$y^2 - 4y + x = 0$$