Finding Volumes of

Solids Using the Shell
Method

> Vertical Shell: Volume $=\int_{a}^{b} 2 \pi \cdot($ Shell Radius $) \cdot($ Shell Height $) d x=\int_{a}^{b} 2 \pi \cdot x \cdot f(x) d x$
> Horizontal Shell: Volume $=\int_{c}^{d} 2 \pi \cdot($ Shell Radius $) \cdot($ Shell Height $) d y=\int_{c}^{d} 2 \pi \cdot y \cdot f(y) d y$

1. The region bounded by the curve $y=\sqrt{x}$, the x-axis and the line $x=4$ is revolved about the line y-axis to generate a solid. Find the volume.

2. The region bounded by the curve $y=\sqrt{x}$, the x-axis and the line $x=4$ is revolved about the x-axis to generate a solid. Find the volume.

3. The region in the first quadrant bounded by the parabola $y=x^{2}$, the y-axis, and the line $y=4$ is revolved about the line $x=2$ to generate a solid. Find the volume.

