Lengths of Segments, Distance and Midpoint Formulas

Ruler Postulate - Two points on any line can be paired with real numbers so that, given any two points P and Q on the line, P corresponds to zero, and Q corresponds to a positive number.

1. Refer to the number line below to find each measure.

a) $A E$
b) $B D$
c) $E C$
d) $F D$
e) $G A$

2. If Q is between P and R, find each missing measure.
a) $P Q=7, Q R=11, P R=$
b) $R Q=15, P R=20, Q P=$
c) $P Q=4 \frac{2}{3}, Q R=1 \frac{1}{3}, R P=$
3. If Q is between P and R, find the value of x and the length of each segment.
a) $P Q=2 x$
$Q R=4 x+6$
$P R=24$
b) $Q P=3 x+7$
$R Q=2 x+8$
$R P=6 x$
c) $P Q=4-x$
$R Q=2(x+3)$
$R P=5 x-2$
$\underline{\text { Pythagorean Theorem }} a^{2}+b^{2}=c^{2}$

Distance Formula $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
$(0,1)$ and $(3,2)$

$$
(-4,6) \text { and }(-3,-1)
$$

4. Use the coordinate plane to find the measure of $\overline{A B}$. Round your answer to the nearest hundredth.

$\underline{\text { Midpoint Formula }}\left(x_{m}, y_{m}\right)=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
$(8,7)$ and $(-4,1)$ $(-4,6)$ and $(-3,-1)$
5. Find the coordinates of point A if $C(2,-1)$ is the midpoint of $\overline{A B}$ and the coordinates of B are $(4,1)$.

6. If F is the midpoint of $\overline{D E}, D F=3 x+4$ and $F E=2 x+12$, find the value of x and the measure of $\overline{D E}$.
