Proving Congruent Triangles

 $\underline{\underline{\text{Side-Side-Postulate (SSS)}}} \text{ - If the sides of one triangle are congruent to the sides of a second triangle, then the triangles are congruent.}$

<u>Side-Angle-Side Postulate (SAS)</u> - If two sides and the included angle of one triangle are congruent to two sides and the included angle of another triangle, then the triangles are congruent.

 $\underline{\frac{\text{Angle-Side-Angle Postulate (ASA)}}{\text{included side of another triangle, then the triangles are congruent.}}} \text{ - If two angles and the included side of one triangle are congruent to two angles and the included side of another triangle, then the triangles are congruent.}$

 $\underline{\text{Angle-Angle-Side Theorem (AAS)}} \text{ - If two angles and a nonincluded side of one triangle are congruent to the corresponding two angles and side of a second triangle, then the triangles are congruent.}$

Directions: Write a proof for each.

1. Given: $\angle D \cong \angle E$

C is the midpoint of \overline{DE}

Prove: $\triangle DBC \cong \triangle EAC$

Statement

1. ∠*D* ≅ ∠*E*

C is the midpoint of \overline{DE}

Reason

1. Given

2. Given: \overline{DE} bisects \overline{BA} \overline{BA} bisects \overline{DE} Prove: $\triangle DBC \cong \triangle EAC$

Statement

1. \overline{DE} bisects \overline{BA} \overline{BA} bisects \overline{DE}

Reason

3. Given: $\triangle ABC$ is an isosceles triangle with vertex $\angle ABC$

D is the midpoint of \overline{AC}

Prove: $\triangle ABD \cong \triangle CBD$

Statement

1. $\triangle ABC$ is an isosceles triangle with vertex $\angle ABC$ $D \text{ is the midpoint of } \overline{AC}$

Reason

1. Given

4. Given: $\overline{BD} \perp \overline{AC}$ \overline{BD} bisects \overline{AC}

Prove: $\triangle ABD \cong \triangle CBD$

Statement

1. $\overline{BD} \perp \overline{AC}$ \overline{BD} bisects \overline{AC}

Reason

5. Given: $\overline{AB} \parallel \overline{DC}$ $\overline{BC} \parallel \overline{AD}$

 $\overline{BC} \parallel \overline{AD}$ Prove: $\angle A \cong \angle C$

<u>Statement</u>

1. $\overline{AB} \parallel \overline{DC}$ $\overline{BC} \parallel \overline{AD}$ \underline{Reason}

1. Given

6. Given: ∠*ADB* ≅ ∠*CBD*

 $\overline{DA} \cong \overline{BC}$

Prove: $\overline{AB} \cong \overline{CD}$

Statement

1. ∠*ADB* ≅ ∠*CBD*

 $\overline{DA} \cong \overline{BC}$

Reason

7. Given: $\angle BDE \cong \angle BED$

 $\angle A \cong \angle C$ $\overline{AD} \cong \overline{CE}$

Prove: $\triangle BAE \cong \triangle BCD$

<u>Statement</u>

1. *∠BDE* ≅ *∠BED*

 $\angle A \cong \angle C$

 $\overline{AD}\cong \overline{CE}$

Reason

1. Given

8. Given: $\angle ABE \cong \angle CBD$

 $\measuredangle A \cong \measuredangle C$

 $\overline{AB}\cong \overline{CB}$

Prove: $\triangle ABD \cong \triangle CBE$

<u>Statement</u>

1. $\angle ABE \cong \angle CBD$

 $\angle A \cong \angle C$

 $\overline{AB}\cong \overline{CB}$

Reason

9. Given:
$$\angle ABD \cong \angle CBE$$

$$\angle A \cong \angle C$$

$$\overline{AB}\cong \overline{CB}$$

Prove:
$$\overline{AE} \cong \overline{CD}$$

Statement

1. *∠ABD* ≅ *∠CBE*

$$\angle A \cong \angle C$$

$$\overline{AB}\cong \overline{CB}$$

Reason

1. Given

10. Given: $\overline{AE} \cong \overline{CD}$

$$\measuredangle A \cong \measuredangle C$$

$$\overline{AB}\cong \overline{CB}$$

Prove:
$$\overline{DB} \cong \overline{EB}$$

Reason 1. Given

Statement

1. $\overline{AE} \cong \overline{CD}$

$$\angle A \cong \angle C$$

$$\overline{AB}\cong \overline{CB}$$

11. Given: $\triangle ABC$ is an isosceles triangle with base \overline{AC}

$$\angle BDE \cong \angle BED$$

$$\angle A \cong \angle C$$

Prove: $\triangle ABE \cong \triangle CBD$

<u>Statement</u>

1. $\triangle ABC$ is an isosceles triangle with base \overline{AC}

 $\angle BDE \cong \angle BED$

 $\angle A \cong \angle C$

Reason

1. Given

12. Given: $\angle ABE \cong \angle DCE$ $\angle EAD \cong \angle EDA$ Prove: $\overline{BA} \cong \overline{CD}$

Statement

1. $\angle ABE \cong \angle DCE$ $\angle EAD \cong \angle EDA$ B E

Reason

13. Given:
$$\angle A \cong \angle ABE$$

 $\angle ECD \cong \angle D$

 $\not \angle A \cong \not \angle D$

 $\overline{AE} \cong \overline{DE}$

Prove: $\triangle BEC$ is an isosceles triangle

Statement

1. $\angle A \cong \angle ABE$

 $\measuredangle ECD \cong \measuredangle D$

 $\angle A \cong \angle D$

 $\overline{AE} \cong \overline{DE}$

Reason