Polygon - A plane figure that meets the following conditions:

1. It is formed by three or more segments called sides (no two sides with a common endpoint are collinear).
2. Each side intersects exactly two other sides, one at each endpoint.

Convex Polygon

$\underline{\text { Regular Polygon - A polygon with congruent sides and congruent angles. }}$

Number of Sides	Polygon
3	Triangle
4	Quadrilateral
5	Pentagon
6	Hexagon
7	Heptagon
8	Octagon
9	Nonagon
10	Decagon
12	Dodecagon
n	n-gon

Sum of the measures of the interior angles of a convex polygon: $(n-2) 180^{\circ}$
Each interior angle of a regular polygon: $\frac{(n-2) 180^{\circ}}{n}$
Sum of the measures of the exterior angles of a convex polygon: 360°
Each exterior angle of a regular polygon: $\frac{360^{\circ}}{n}$

1. Find the sum of the measures of the interior angles of each convex polygon.
a) 8-gon
b) $2 m$-gon
2. The sum of the measures of the interior angles of a convex polygon is 720°. Find the number of sides.
3. The measure of each exterior angle of a regular polygon is given. Find the number of sides of the polygon.
a) 72°
b) 14.4°
4. The measure of each interior angle of a regular polygon is given. Find the number of sides in each polygon.
a) 144°
b) 176.4°
5. Find the value of x.

6. Find the measure of each angle.

7. The measures of the interior angles of a pentagon are $x, 3 x-4,2 x+2,6 x-8$ and $2 x+4$. Find the measure of each angle.
8. Find the value of x.

