Quadratic Equation - An equation of the form $a x^{2}+b x+c=0$, where a, b and c are real numbers and $a \neq 0$.

Step 1: Isolate the square and linear terms.
Step 2: Divide the coefficient of the linear term by two and then square it. Add the number to both sides of the equation.
Step 3: Write in factored form and the use the square root method to solve for the variable.

Directions: Solve each quadratic equation by completing the square.

$$
\begin{aligned}
& \text { 1. } \begin{array}{l}
x^{2}+4 x+3=0 \\
-3-3 \\
x^{2}+4 x+4=-3+4 \\
\frac{4}{2}=2^{2}=4 \\
x^{2}+4 x+4=1 \\
(x+2)(x+2)=1 \\
\sqrt{(x+2)^{2}}=\sqrt{1} \\
x+2= \pm 1
\end{array},=\frac{1}{2}=1
\end{aligned}
$$

$$
\begin{aligned}
& \text { 2. } x^{2}-8 x+12=0 \\
& -12-12 \\
& x^{2}-8 x+16=-12+16 \\
& \frac{8}{2}=(-4)^{2}=16 \\
& x^{2}-8 x+16=4 \\
& (x-4)(x-4)=4 \\
& \sqrt{(x-4))^{2}}=\sqrt{4} \\
& x-4= \pm 2
\end{aligned}
$$

$$
\begin{array}{rr}
x+2=1 & x+2=-1 \\
-2-2 & -2-2 \\
x=-1 & x=-3
\end{array}
$$

$$
\begin{array}{ll}
\text { 3. } x^{2}+3 x=4 \\
x^{2} \times 3 x+\frac{9}{4}=4+\frac{9}{4} & x+\frac{3}{2}=\frac{5}{2} \\
\frac{3}{2}=\left(\frac{3}{2}\right)^{2}=\frac{9}{4} & -\frac{3}{2}-\frac{3}{2} \\
4 \cdot \frac{4}{2}+\frac{9}{4}=\frac{16}{4}+\frac{9}{4}=\frac{25}{4} & -\frac{3}{2}-\frac{3}{2} \\
x^{2}+3 x+\frac{9}{4}=\frac{25}{4} & x=1 \\
\left(x+\frac{3}{2}\right)\left(x+\frac{3}{2}\right)=\frac{25}{4} & \\
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{25}{4}} \\
x+\frac{3}{2}=\frac{5}{2}
\end{array}
$$

$$
\text { 4. } \left.\begin{array}{l}
3 x^{2}+12 x-18=0 \\
\\
\quad+18+18 \\
\frac{3 x^{2}}{3}+\frac{12 x}{3}=\frac{18}{3} \\
x^{2}+4 x+4=6+4
\end{array}\right\}
$$

$$
\begin{aligned}
& \text { 5. } \begin{aligned}
& 5 x^{2}-5 x+12=8 \\
&-12-12 \\
& \frac{5 x^{2}}{5}-\frac{5 x}{5}= \frac{-4}{5} \\
& x^{2}-1 x+\frac{1}{4}=\frac{-4}{5}+\frac{1}{4} \\
& \frac{1}{2}=\left(\frac{1}{2}\right)^{2}=\frac{1}{4} \\
& \frac{-41 \cdot 4}{5 \cdot 4}+\frac{115}{4} \cdot 5=\frac{-16}{20}+\frac{5}{20}=\frac{-11}{20} \\
& x^{2}-1 x+\frac{1}{4}=-\frac{11}{20} \\
&\left(x-\frac{1}{2}\right)\left(x-\frac{1}{2}\right)=-\frac{11}{20} \\
& \sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{-11}{20}}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& x-\frac{1}{2}= \pm \frac{\sqrt{-11}}{\sqrt{20}} \\
& \begin{array}{l}
x-\frac{1}{2}=\frac{ \pm i \sqrt{11}}{20 \sqrt{5}} \\
\\
+\frac{1}{2} \\
+\frac{1}{2}
\end{array} \\
& x=\frac{1}{2} \pm \frac{i \sqrt{11}}{2 \sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}} \\
& x=\frac{1 \cdot 5}{2 \cdot 5} \pm \frac{i \sqrt{55}}{10} \\
& x=\frac{5}{10} \pm \frac{i \sqrt{55}}{10} \\
& x=\frac{5 \pm i \sqrt{55}}{10}
\end{aligned}
$$

$$
\sqrt{20}=\sqrt{4 \cdot 5}
$$

$$
=2 \sqrt{5}
$$

6. $\frac{9 x^{2}}{9}-\frac{12 x}{9}=\frac{-10}{9}$

$$
x-\frac{2}{3}= \pm \sqrt{\frac{-2}{3}}
$$

$$
x^{2}-\frac{4}{3} x+\frac{4}{9}=\frac{-10}{9}+\frac{4}{9}
$$

$$
\frac{4}{3} \cdot \frac{1}{2}=\frac{4}{6}=\left(\frac{2}{3}\right)^{2}=\frac{4}{4}
$$

$$
x^{2}-\frac{4}{3} x+\frac{4}{9}=-\frac{6}{9}
$$

$$
\left(x-\frac{2}{3}\right)\left(x-\frac{2}{3}\right)=-\frac{2}{3}
$$

$$
\sqrt{\left(x-\frac{2}{3}\right)^{2}}=\sqrt{-\frac{2}{3}}
$$

7. $-x^{2}+7 x-9=2$

$$
\begin{gathered}
+9+9 \\
-x^{2}+\frac{7 x}{-1}=\frac{11}{-1}
\end{gathered}
$$

$$
x^{2}-7 x+\frac{49}{4}=-11+\frac{49}{4}
$$

$$
\frac{7}{2}=\left(\frac{7}{2}\right)^{2}=\frac{49}{41}
$$

$-\frac{11^{4}}{4 \cdot 1}+\frac{49}{4}=\frac{-44}{4}+\frac{49}{4}=\frac{5}{4}$

$$
x^{2}-7 x+\frac{49}{4}=\frac{5}{4}
$$

$$
\begin{aligned}
& \left(x-\frac{7}{2}\right)\left(x-\frac{7}{2}\right)=\frac{5}{4} \\
& \sqrt{\left(x-\frac{7}{2}\right)^{2}}=\sqrt{\frac{5}{4}}
\end{aligned}
$$

$$
x-\frac{7}{2}= \pm \frac{\sqrt{5}}{2}
$$

$$
+\frac{7}{2}+\frac{7}{2}
$$

$x=\frac{7}{2} \pm \frac{\sqrt{5}}{2}$

$$
x=\frac{7 \pm \sqrt{5}}{2}
$$

