Solving Quadratic Equations by Completing the Square

Quadratic Equation - An equation of the form $ax^2 + bx + c = 0$, where a, b and c are real numbers and $a \neq 0$.

Step 1: Isolate the square and linear terms.

- Step 2: Divide the coefficient of the linear term by two and then square it. Add the number to both sides of the equation.
- Step 3: Write in factored form and the use the square root method to solve for the variable.

Directions: Solve each quadratic equation by completing the square.

1. $x^2 + 4x + 3 = 0$ -3 -3 x ² - 4	$\begin{array}{ccc} x+z=1 & x+z=-1 \\ -z-z & -z-z \\ \hline \end{array}$
$\frac{4}{3} = 2^{2} = 4$ $\frac{x^{2} + 4x + 4}{x^{2} + 4x + 4} = 1$	
$\frac{(x+2)(x+2)}{(x+2)^2} = 1$	
x+2 = ∓ 1	
2. $x^2 - 8x + 12 = 0$ - 12 - 12	
$x^2 - 9x + 16 = -12 + 16$	x-4=2 X-4=-2 +4+4 +4
$\frac{8}{2} = (4)^2 = 16$	x=4 $x=2$
x ^z -8x+16= 4 (x-4)(x-4) = 4	
$\int (x-c)^2 = \int H$	
$x - 4 = \pm 2$	

3.
$$x^{2}+3x=4$$

 $x^{2}+3x+\frac{q}{4} = 4 + \frac{q}{4}$
 $\frac{1}{a} = \left(\frac{2}{a}\right)^{2} = \frac{q}{4}$
 $4 \cdot \frac{1}{4} + \frac{q}{4} = \frac{16}{4} + \frac{q}{4} = \frac{25}{4}$
 $x + \frac{3}{2} = \frac{5}{2}$
 $x + \frac{3}{2} = \frac{5}{4}$
 $x + \frac{3}{2} = \frac{1}{4}$
 $x + \frac{3}{4}$

4.
$$3x^{2} + 12x - 18 = 0$$

 $+ 19 + 18$
 $\frac{3x^{2}}{3} + \frac{12x}{3} = \frac{18}{3}$
 $x^{2} + \frac{12x}{3} = \frac{18}{3}$
 $x^{2} + \frac{12x}{3} = \frac{18}{3}$
 $\frac{4}{2} = 2^{2} = \frac{1}{3}$
 $x^{2} + \frac{1}{2}x + \frac{1}{3} = 6 + \frac{1}{3}$
 $\frac{4}{2} = 2^{2} = \frac{1}{3}$
 $x^{2} + \frac{1}{2}x + \frac{1}{3} = 6 + \frac{1}{3}$
 $\frac{4}{2} = 2^{2} = \frac{1}{3}$
 $x^{2} + \frac{1}{2}x + \frac{1}{3} = 6 + \frac{1}{3}$
 $\frac{4}{2} = 2^{2} = \frac{1}{3}$
 $x + 2)(x + 2) = 10$
 $\sqrt{(x + 2)^{2}} = \sqrt{10}$
 $x + 2 = \pm \sqrt{10}$

$X+Z=\sqrt{10}$	メナンヨーイン
-Z -Z	-2 -2
$X = -Z + \sqrt{10}$	x=-2-10
	·

5.
$$5x^{2} - 5x + 12 = 8$$

 $-12 - 12$
 $5x^{2} - 5x = -4$
 $5x^{2} - 5x = -5x$
 $x^{2} - 1x + 4$
 $y = -44$
 $y = -44$