Graphs of Rational Functions

Domain the allowable *x*-values

Vertical Asymptote set the denominator equal to zero

$$\frac{x-1=0}{\sqrt{A}: x=1}$$

Hole/Open Circle/Deleted Point

set the denominator that cancels equal to zero

$$\begin{array}{ccc} x+1=0 & y=(-1+2)(-1+3) \\ x=-1 & (-1-1) \\ & y=(1)(2)=-1 \\ & -z \end{array}$$
Hale: $(-1,-1)$

Horizontal Asymptote

Slant/Oblique Asymptote

use long division only if there is no horizontal asymptote

x-intercepts

set y equal to zero and solve for x

y-intercept

set x equal to zero and solve for y

Steps to Graph Rational Functions

- 1. Find the Domain.
- 2. Find all asymptotes.
- 3. Find all intercepts.

1. Graph each rational function.

a)
$$f(x) = \frac{x^2 + 1}{x}$$

D: $x \neq 0$
VA: $x = 0$
Hole: None

HA: Dey Num=2 > Deg Den=1 NONE

b)
$$f(x) = \frac{x^2}{x^2 - 16} = \frac{x^2}{(x+y)(x-y)}$$

 $D: x+y \pm 0 x-y \pm 0$
 $[x \pm -y] x \pm y$
VA: $x+y \pm 0$
 $[x \pm -y] x \pm y$
HA: Drg Num=2 = Deg DeN=2
 $y = \frac{1}{1} = [y=1]$
SA: NORME $x-y \pm 1$
 $Q = \frac{x^2}{x^2 - 1}$
 $Q = x^2$
 $x = 0$ [(0,0)] $f(1) = \frac{1^2}{1 - 16}$

d)
$$f(x) = \frac{2}{x^2 + 1}$$

 $f(x) = \frac{2}{x^2 + 1}$
 $f(x) = \frac{2}{x^2 - 1}$
 $f(x) = \frac{2}{x^2$

- VA: x2+1=0 Hole: NONE NONE
- $\begin{array}{rcl} \text{HA}^{3} & \text{Deg Num} = 0 & \text{C} & \text{Deg Den} = 2 & f(-1) = \frac{z}{(-1)^{2} + 1} & \frac{z}{2} = 1 \\ \hline y = 0 & \text{SA: NONe} & f(1) = \frac{z}{1^{2} + 1} & = \frac{z}{2} = 1 \\ \hline x 1 N^{\frac{1}{2}} & \frac{y 1 N^{\frac{1}{2}}}{1^{2} + 1} & \frac{y 1 N^{\frac{1}{2}}}{1^{2} + 1} & \frac{y 1 N^{\frac{1}{2}}}{1^{2} + 1} & \frac{z}{2} = 1 \\ O = \frac{z}{x^{2} + 1} & y = \frac{z}{\sqrt{2^{2} + 1}} & f(-5) = \frac{z}{\sqrt{2^{2} + 1}} = \frac{z}{2c} \\ O = Z & NONE & y = 2 & \left[(0, Z) \right] \end{array}$

