Graphs of Rational Functions

$$
\begin{aligned}
& f(x)=\frac{x^{3}+6 x^{2}+11 x+6}{x^{2}-1}=\frac{(x+1)(x+2)(x+3)}{(x+1)(x-1)} \\
& p: \pm 1, \pm 2 \pm 3, \pm 6 \\
& q^{:} \pm \pm 1 \\
& P / q^{\prime} \pm 1, \pm 2, \pm 3, \pm 6 \\
& -1 \left\lvert\, \begin{array}{ccc}
1 & 6 & 11 \\
-1 & -5 & -6
\end{array}\right. \\
& \begin{array}{l}
1 x^{2} 5 x
\end{array} \\
& x^{2}+5 x+6 \\
& (x+3)(x+2)
\end{aligned}
$$

Domain
the allowable x-values

$$
\begin{array}{ll}
x+1 \neq 0 & x-1 \neq 0 \\
x \neq-1 & x \neq 1 \\
\hline
\end{array}
$$

Vertical Asymptote
set the denominator equal to zero

$$
x-1=0
$$

$$
\text { VA: } x=1
$$

$\underline{\text { Hole/Open Circle/Deleted Point }}$ set the denominator that cancels equal to zero

$$
\begin{array}{ll}
\begin{array}{l}
x+1=0 \\
x=-1
\end{array} & y=\frac{(-1+2)(-1+3)}{(-1 \sim 1)} \\
& y=\frac{(1)[2)}{-2}=-1
\end{array}
$$

Hole: $(-1,-1)$

Degree of Numerator > Degree of Denominator Horizontal Asymptote: None
Degree of Numerator < Degree of Denominator Horizontal Asymptote: $y=0$
Degree of Numerator $=$ Degree of Denominator \quad Horizontal Asymptote: $y=\frac{\text { Leading Coefficient of Numerator }}{\text { Leading Coefficient of Denominator }}$

$$
f(x)=\frac{x^{3}+6 x^{2}+11 x+6}{x^{2}-1}
$$

Deg. Nim $=3$
NO $1+A$
Deg. $\operatorname{Den}=2$

Slant/Oblique Asymptote
use long division only if there is no horizontal asymptote

$12 \times+12$

$$
5 A: \quad y=x+6
$$

$\underline{y \text {-intercept }}$

set x equal to zero and solve for y

$$
\begin{aligned}
& y=\frac{(0+2)(0+3)}{(0-1)} \\
& y=\frac{2 \cdot 3}{-1}=-6
\end{aligned}
$$

$$
\text { yint: }(0,-6)
$$

Steps to Graph Rational Functions

1. Find the Domain.
2. Find all asymptotes.
3. Find all intercepts.
4. Graph each rational function.
a) $f(x)=\frac{x^{2}+1}{x} \quad D: \quad x \neq 0$
$v A: x=0$ Hoke: wane

HA: Dey Num $=2>$ Deg DCN $=1$ None

SA:

$$
\begin{array}{lcc}
x \\
\begin{array}{c}
x \\
\frac{x^{2}}{x^{2}}+0 x+1 \\
1
\end{array} & \frac{x^{2}}{x}=x & \frac{x-1 n+}{0 x+1}
\end{array}
$$

b) $f(x)=\frac{x^{2}}{x^{2}-16}=\frac{x^{2}}{(x+4)(x-4)} \quad D: \frac{x+4 \neq 0 \quad x-4 \neq 0}{x \neq-4 \quad x \neq 4}$

VA: $x+4=0 \quad x-4=0 \quad$ Hale: NONE

$$
x=-4 \quad x=4
$$

HA: Deg num $=2 \Rightarrow \operatorname{Deg} \operatorname{Den}=2$

$$
y=\frac{1}{1}=y=1
$$

SA: NONE

$$
f(-1)=\frac{(-1)^{2}}{(-1)^{2}-16}
$$

$$
\begin{aligned}
& \frac{x-1 N t}{0=\frac{x^{2}}{x^{2}-16}} \\
& 0=x^{2} \\
& x=0 \quad(0,8)
\end{aligned}
$$

Y-int

$$
y=\frac{0^{2}}{\Delta^{2}-16} \quad=\frac{1}{-15}
$$

$$
y=0 \quad\langle\Delta, \Delta) \quad f(1)=\frac{1^{2}}{1-16}=\frac{1}{-15}
$$

c) $f(x)=\frac{x}{x^{2}-1}=\frac{x}{(x+1)(x-1)} \quad \begin{array}{rl}0: x+1 \neq 0 & x-1 \neq 0 \\ x \neq-1 & x \neq 1\end{array}$
$V_{A}: x+1=c \quad x-1=0 \quad$ mole: Nome

$$
x=-1 \quad x \simeq 1
$$

HA: Degnum=1< Deg Den $=2$

$$
y=0
$$

SA: NONE

$$
\begin{array}{ll}
\frac{x-100 t}{x} & y / 1 N t \\
0=\frac{x}{x^{2}}-1 & y=\frac{0}{0^{2}-1} \\
0=x \quad y=0 \mid(0,0)] & f(1 / 2)=\frac{-\frac{1}{2}}{\left(-\frac{1}{2}\right)^{2}-1}=\frac{-1 / 2}{-3 / 4}>0 \\
(1 / 2)^{2}-1 & =\frac{1 / 2}{-3 / 4}<0
\end{array}
$$

d) $f(x)=\frac{2}{x^{2}+1}$

D

$$
\begin{gathered}
x^{2}+1 \neq 0 \\
-[-1 \\
x^{2}=-1
\end{gathered}
$$

$$
\mathbb{R}
$$

$V A: x^{2}+1=0 \quad$ Hole: NANC NoNE

HA: Deg NuM=0 < Deg Den =2 $f(-1)=\frac{z}{(-1)^{2}+1}=\frac{z}{2}=1$

$$
y=0
$$

$x-1 n t$
$0=\frac{2}{x^{2}+1}$
$0=2$ NONE

SA: NONE

$$
\frac{y-1 N t}{y=\frac{2}{\sigma^{2}+1}}
$$

$$
f(1)=\frac{2}{1^{2}+1}=\frac{2}{2}=1
$$

$$
(1,1)
$$

$$
\pi(-5)=\frac{2}{(-5)^{2}+1}=\frac{2}{26}
$$

$$
y=2 \quad(0,2)
$$

