Conic Sections - Circles

Standard Form for the Equation of a Circle
$(x-h)^{2}+(y-k)^{2}=r^{2}$
Center $=(h, k)$
Radius $=r$

General Form for the Equation of a Circle
$x^{2}+y^{2}+A x+B y+C=0$
A, B and C are constants.
x^{2} and y^{2} have the same coefficients.

1. Find the center and radius for each circle.
a) $(x+1)^{2}+(y-2)^{2}=49$
center $(-1,2)$
$R_{c \cdot d} d_{15}=\sqrt{49}=7$
b) $x^{2}+\left(y-\frac{1}{2}\right)^{2}=1$

Center $(0,1 / 2)$
Rachus $=\sqrt{1}=1$
c) $x^{2}+y^{2}=5$
center 0,0)
Radius $=\sqrt{5}$
d) $\left(x+\frac{1}{2}\right)^{2}+\left(y-\frac{3}{2}\right)^{2}=\frac{9}{4}$

Center $\left.(-1)_{2} 3 / 2\right)$

$$
R_{\text {udine }}=\sqrt{\frac{9}{4}}=\frac{\sqrt{9}}{\sqrt{4}}=\frac{3}{2}
$$

2. Find an equation for the circle.
a)

$$
\begin{aligned}
\text { midpoint } & =\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) \\
& =\left\langle\frac{0+3}{2}, \frac{0+0}{2}\right)=\left(\frac{3}{2}, 0\right)
\end{aligned}
$$

center $(3 / 2,0) \quad$ Radius $=\frac{3}{2}$

$$
\begin{aligned}
& (x-h)^{2}+(y-k)^{2}=R^{2} \\
& (x-3 / 2)^{2}+y^{2}=\left(\frac{3}{2}\right)^{2} \\
& (x-3 / 2)^{2}+y^{2}=9 / 4
\end{aligned}
$$

b) Center is at $(4,-1)$ and tangent to the line $y=3$.

$$
\begin{gathered}
\sqrt{R}=4 \\
(x-n)^{2}+(y-k)^{2}=R^{2} \\
(x-4)^{2}+(y+1)^{2}=16
\end{gathered}
$$

c) Center is at $(-1,-3)$ and tangent to the line $3 x+4 y=10$.

$$
\begin{aligned}
& \begin{array}{ll}
3 x+4 y=10 \\
-3 x & -3 x
\end{array} \quad m_{a}=\frac{4}{3} \\
& \frac{4 y}{4}=\frac{-3 x}{4}+\frac{10}{4} \quad(a, b)(-1,-3) \\
& y=-\frac{3}{4} x+\frac{5}{2} \quad i n=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& m=\frac{-3}{4} \\
& b=(0,5 / 2) \\
& \text { (4) }-3-b \\
& 3 x+4 y=10 \\
& \text { * } 3 a+4 b=10 \\
& 4(-1-a)=3(-3-b) \\
& -4-4 a=-9-3 b \\
& +9+4 a+9+4 a \\
& \text { * } 5=4 a-3 b \\
& (-1,-3)(2,1) \\
& 3(3 a+4 b=10) \quad 9 a+12) 6=30 \quad 3(2)+4) b=10 \\
& \begin{array}{llll}
4(4 a-3 b=5) & \begin{array}{lll}
16 a-y^{2} b=20 & 6+4 b=10 & d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{z}-y_{1}\right)^{2}} \\
\frac{25 a}{25}=\frac{50}{25} & \frac{4 b}{4}=\frac{4}{4} & d=\sqrt{(12--1)^{2}+(1-3)^{2}} \\
& d=\sqrt{3^{2}+4^{2}} \\
a=2 & b=1 & d=\sqrt{25+16} \\
& & d=5
\end{array}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
3 x+4 y & =10 \\
* \quad 3 a+4 b & =10
\end{aligned} \\
& \begin{array}{l}
+9+4 a+9+4 a \\
* \quad 5=4 a-3 b \\
3(3 a+4 b=10) \\
9 a+126=30 \quad 3(2)+4) b=10
\end{array} \quad(-1,-3)(2,1) \\
& \begin{array}{ll}
C:(-1,-3) \\
R=5
\end{array} \quad \begin{array}{l}
(x-h)^{2}+(y-K)^{2}=R^{2} \\
(x+1)^{2}+(y+3)^{2}=25
\end{array} \\
& \begin{array}{ll}
\begin{array}{l}
C:(-1,-3) \\
R=5
\end{array} & (x-h)^{2}+(y-K)^{2}=R^{2} \\
(x+1)^{2}+(y+3)^{2}=25
\end{array} \\
& \begin{array}{ll}
\begin{array}{l}
C:(-1,-3) \\
R=5
\end{array} & (x-h)^{2}+(y-K)^{2}=R^{2} \\
\left((x+1)^{2}+(y+3)^{2}=25\right.
\end{array} \\
& \frac{4 b}{4}=\frac{5}{4} \\
& d=\sqrt{3^{2}+4^{2}} \\
& b=1 \quad \begin{array}{ll}
d=\sqrt{2} \\
d=5
\end{array}
\end{aligned}
$$

3. Find the standard equation for the circle and sketch the graph.

$$
\begin{aligned}
& \frac{2 x^{2}}{2}+\frac{2 y^{2}}{2}-\frac{8 x}{2}+\frac{12 y}{2}+\frac{2}{2}=0 \\
& x^{2}+y^{2}-4 x+6 y+1=0 \\
& \left(x^{2}-4 x+4\right)+\left(y^{2}+6 y+9\right)=-1+4+9 \\
& \frac{4}{2}=(2)^{2}=4 \quad \frac{6}{2}=(3)^{2}=9 \\
& \left(x^{2}-4 x+4\right)+\left(y^{2}+6 y+9\right)=12 \\
& (x-2)^{2}+(y+3)^{2}=12
\end{aligned}
$$

center: $(2,-3)$

$$
R=\sqrt{12} \approx 3.5
$$

4. Find the standard equation for the circle that contains the three points $\underset{(2,6)}{x y}, \stackrel{x}{(3,-1)}$ and $(-5,5)$.
slim. C using (1) + (2) Elim.c using (2) +3

$$
\begin{array}{ll}
2 A+\angle B+C=-40 & 3 A-B+C=-10 \\
-3 A+B-C=10 & \frac{5 A-5 B-C=50}{8 A-6 B=40} *
\end{array}
$$

use (4) + (5) to find $A+B$
$-A+7(-4)=-30 \quad F$ (1) to

$$
\begin{aligned}
& 2 A+C B+C=-40 \\
& 2(2)+6(-4)+C=-40 \\
& 4-24+C=-40 \\
& -20+C=-40 \\
& +20+20 \\
& C=-20
\end{aligned}
$$

$$
x^{2}+y^{2}+A x+B y+C=0
$$

$$
x^{2}+y^{2}+2 x-4 y-20=c
$$

$$
+20+20
$$

$$
\begin{array}{ll}
\left\langle x^{2}+2 x+1\right. & \rangle+\left\langle y^{2}-4 y+4\right\rangle= \\
\frac{2}{2}=(1)^{2}=1 & \frac{4}{2}=(2)^{2}=4 \\
\frac{1}{2} & +4 \\
(x+1)^{2}+(y-2)^{2}=25
\end{array}
$$

$$
\begin{aligned}
& 8(-A+7 B=-30) \rightarrow-8 A+56 B=-240 \\
& 8 A-6 B=40 \quad \frac{8 A-6 B}{}=40 \\
& B=-4 \\
& \text { use (4) to find } A \\
& -A-28=-30 \\
& +28+28 \\
& -A=-2 \\
& A=2
\end{aligned}
$$

$$
\begin{align*}
& x^{2}+y^{2}+A x+B y+C=0 \\
& \text { (2. C) } a^{2}+L^{2}+2 A+C B+C=0 \\
& 4+36+2 A+6 B+C=0 \\
& 2 A+6 B+C=-40 \quad \text { (1) } * \\
& (3,-1) \quad 3^{2}+(-1)^{2}+3 A-1 B+C=0 \\
& 9+1+3 A-1 B+C=0 \\
& 3 A-B+C=-10 \\
& 2 A+6 B+C=-40 \tag{2}\\
& \begin{array}{l}
2 A+6 B+C=-40 \\
3 A-B+C=-10
\end{array} \\
& (-5.5)(-5)^{2}+(5)^{2}-5 A+5 B+C=C \\
& -5 A+5 B+C=-50 \\
& 25+25-5 A+5 B+C=0 \\
& -5 A+5 B+C=-50 \quad \text { (3)* }
\end{align*}
$$

