Standard Form of the Equation of a Parabola

Vertical Parabola
$(x-h)^{2}=4 p(y-k)$

Horizontal Parabola

$$
\text { Vertex }=(h, k)
$$

Focus $=p$ units from the vertex (inside the parabola)
Directrix $=p$ units from the vertex (outside the parabola)
Length of Focal Chord $=4 p$

1. Find the vertex, focus and directrix of the parabola and sketch its graph.

$$
x^{2}-2 x+1=4 y-9+1
$$

$$
\frac{2}{2}=(1)^{2}=1
$$

$$
x^{2}-2 x+1=4 y-8
$$

$$
F:(1,3)
$$

Fseal chord

$$
4 p=4(1)=4
$$

$$
(x-1)^{2}=4 \frac{4}{4 p}(y-2)
$$

vertex: $(1,2)$

$$
\begin{aligned}
& 4_{p}=4 \\
& p=1
\end{aligned}
$$

$$
\begin{aligned}
\text { c) } y^{2}+6 y+2 x+25=0 & \text { Hor|zontal } \\
-2 x-25 & (y-k)^{2}=4 p(x-h)
\end{aligned}
$$

$$
y^{2}+6 y+9=-2 x-25+9
$$

$$
\frac{6}{2}=(3)^{2}=9
$$

$$
y^{2}+6 y+9=-2 x-16
$$

$$
(y+3)^{2}=\frac{-2}{4 p}(x+8) K
$$

2. Find the standard form of the equation of the parabola.
a)

$$
(y-k)^{2}=4 p(x-h)
$$

$$
v(0,0)
$$

$$
y^{2}=4 p x \quad y^{2}=4\left(\frac{-1}{8}\right) x
$$

$$
\begin{aligned}
& (1)^{2}=4 p(-2) \quad y^{2}=-\frac{1}{2} x \\
& \frac{1}{-8}=\frac{-8 p}{-8} \\
& p=-\frac{1}{8}
\end{aligned}
$$

b) Vertex is at the origin.

Directrix: $y=3$
$\curvearrowright(x-h)^{2}=4 p(y-k)$
$v:(0,0)$
$p=3$
$x^{2}=-12 y$

c) Focus: $(-3,1)$

Directrix: $x=5$
$v:(r, s)$
$(y-k)^{2}=4_{p}(x-h)$

$$
p=4
$$

$$
(y-1)^{2}=-16(x-1)
$$

3. The equation of a parabola and the tangent line are given. Find the coordinates of the point of tangency.

$$
\begin{aligned}
& x^{2}+12 \sqrt[y]{y}=0 \\
& x+y=3 \\
& x^{2}+12 y=0 \\
& -12 y-12 y \\
& \begin{array}{l}
x^{2}=-12 y \\
V:(0,0)
\end{array} \\
& \text { 니 } p=12 \\
& x^{2}+12(-x+3)=0 \\
& x^{2}-12 x+36=0 \\
& P=3 \\
& (x-6)(x-6)=0 \\
& \text { Fora chord } \\
& 4 \rho=4(3) \sim 12 \\
& x=5 \\
& y=-6+3 \\
& y=-3
\end{aligned}
$$

4. Find the equation of the parabola that contains the points $\begin{array}{cc}\boldsymbol{\lambda} \boldsymbol{y} \\ (0,0) \\ \boldsymbol{y} & (2,2)\end{array}$ and $\begin{gathered}\boldsymbol{x} \boldsymbol{\gamma} \\ (4,8)\end{gathered}$.

$$
(x-h)^{2}=4_{p}(y-k)
$$

$$
\begin{array}{cl}
(0,0): & (0-h)^{2}=4 p(0-k) \\
* & \left.h^{2}\right)=-4 p k \\
(2,2): \quad(2-h)^{2}=4 p(2-k) \\
& (2-h)(2-h)=4 p(2-k) \\
& 4-2 h-2 h+h^{2}=8 p-4 p k \\
* & 4-4 h+h^{2}=8 p-4 p k \\
(4,8) \quad(4-h)^{2}=4 p(8-k) \\
(4-h)(4-h)=4 p(8-k) \\
& 16-4 h-4 h+h^{2}=32 p-4 p k \\
* & 10-8 h+h^{2}=32 p-4 p k
\end{array}
$$

$$
\begin{array}{ll}
4-4 h+\not h^{2}=8 p+h^{2} & 16-8 h+h^{2}=32 p+h^{2} \\
4-4 h=8 p * & 16-8 h=32 p *
\end{array}
$$

$$
\begin{aligned}
& n^{2}=-4 p k \\
& o^{2}=-4\left(\frac{1}{2}\right) k
\end{aligned}
$$

$$
x^{2}=4\left(\frac{1}{2}\right) y
$$

$$
\begin{aligned}
& 0=-2 k \\
& k=0
\end{aligned}
$$

