Related Rates

1. A spherical balloon is being inflated at a constant rate of 100 cubic feet/minute. How fast is the radius of the balloon increasing at the instant when the radius in 5 feet?

$$
\begin{array}{ll}
\frac{d V}{d t}=100 \mathrm{ft}^{3} / \mathrm{min} & V=\frac{4}{3} \pi R^{3} \\
R=5 \text { feet } & (1) \frac{d V}{d t}=\frac{4}{3} \pi \pi R^{2} \frac{d R}{d t} \\
\frac{d R}{d t} & \frac{d V}{d t}=4 \pi R^{2} \frac{d R}{d t} \\
& 100=4 \pi\langle 5)^{2} \frac{d R}{d t} \\
& \frac{1}{d 00}=\frac{100 \pi}{100 \pi} \frac{d r}{d t} \\
& \frac{d r}{d t}=\frac{1}{\pi} \mathrm{ft} \mathrm{lmin}
\end{array}
$$

2. A ladder is 25 feet long with one end against a vertical wall and the other end on the ground. The lower end is being moved away from the wall at a rate of 4 feet/second. How fast is the top of the ladder descending when the bottom of the ladder is 7 feet from the wall?

a

$$
\begin{gathered}
\frac{d n}{d t}=4 F t / \sec \\
a=7 \\
a^{2}+b^{2}=c^{2} \\
7^{2}+b^{2}=25^{2} \\
49+b^{2}=625 \\
b^{2}=576 \quad b=24
\end{gathered}
$$

$$
\begin{gathered}
a^{2}+b^{2}=c^{2} \\
2 a \cdot \frac{d a}{d t}+2 b \cdot \frac{d b}{d t}=2 c \cdot \frac{d c}{d t} \\
2(7)(41)+2(24) \frac{d b}{d t}=2(25)(0) \\
56+48 \frac{d b}{d t}=0 \\
-56-56 \\
\frac{48}{48} \frac{d b}{d t}=\frac{-56}{48} \\
\frac{d b}{d t}=\frac{-7}{6} f t / \mathrm{sec}
\end{gathered}
$$

3. The radius of a circular plate is increasing at a rate of 2 centimeters/second. How fast is the area of the plate changing when the radius is 10 cm ?
$\frac{d r}{d t}=2 \mathrm{~cm} / \mathrm{sec}$.

$$
\begin{aligned}
& A=\pi R^{2} \\
& {[1] \frac{\Delta A}{d t}=\pi \cdot 2 R \cdot \frac{d R}{d t}}
\end{aligned}
$$

$d A$
$d t$
$R=10 \mathrm{~cm}$
4. The height of a rectangular box is 10 inches. If the length increases at a rate of 2 inches/second and its width decreases at a rate of 4 inches/second, at what rate is the volume of the box changing when the length is 8 inches and the width is 6 inches?

5. An ice cream cone 5 inches high and 2 inches in diameter is leaking ice cream from a hole in the bottom at a rate of $\frac{1}{3}$ cubic inches/minute. At what rate is the level of the ice cream falling when the height of the cone measures

$$
\begin{aligned}
& V=\frac{1}{3} \pi R^{2} h \\
& V=\frac{1}{3} \pi\left(\frac{3}{3}\right)^{2} h \\
& V=\frac{1}{5} \pi \cdot \frac{9}{25} h \\
& V=\frac{3 \pi}{25} h
\end{aligned}
$$

$\frac{d V}{d t}=-\left.\frac{1}{3} \int N^{3}\right|_{\text {MiN }}$ $d h$ $\frac{d t}{d t}$
$h=3$

$$
\text { (1) } \frac{d V}{d t}=\frac{3 \pi}{25}(1) \frac{d h}{d t}
$$

6. A balloon rises at a rate of 8 feet per second from a point 60 feet from an observer. Find the rate of change of the angle of elevation when the balloon is 25 feet above the ground.

$$
a^{2}+b^{2}=c^{2}
$$

$$
60^{2}+25^{2}=c^{2}
$$

$$
3600+625=c^{2}
$$

$$
4225=c^{2}
$$

$$
c=65
$$

$$
\cos \theta=\frac{4 \Delta}{65}
$$

$$
\begin{aligned}
& \tan \theta=\frac{h}{a} \\
& \tan \theta=\frac{h}{60} \\
& \tan \theta=\frac{1}{60} \cdot h
\end{aligned}
$$

$$
\sec ^{2} \theta \frac{d \theta}{d t}=\frac{1}{60} \cdot(1) \frac{d h}{d t}
$$

$$
\frac{\sec ^{2} / \theta}{\sec ^{2} \theta} \frac{d \theta}{d t}=\frac{1}{60} \cdot \frac{2}{15} \cdot \frac{1}{\sec ^{2} \theta}
$$

$$
\frac{d \theta}{d t}=\frac{2}{15} \cdot \cos ^{2} \theta
$$

$$
\begin{aligned}
& \frac{d \theta}{d t}=\frac{7}{15} \cdot\left(\frac{60}{65}\right)^{2}=\frac{7200}{63.325} \\
& \frac{d \theta}{d t}=.113 \mathrm{deg} / \mathrm{sec}
\end{aligned}
$$

7. Let $y=\sin x, x=\frac{\pi}{6}$ and $\frac{d x}{d t}=2$. Find $\frac{d y}{d t}$.

$$
\begin{aligned}
\rightarrow y & =\sin x \\
x & =\frac{\pi}{6} \\
\frac{d x}{d t} & =2
\end{aligned}
$$

$$
\begin{aligned}
& y=\sin x \\
& \text { (i) } \frac{d y}{d t}=\cos x \cdot \frac{d x}{d t} \\
& \frac{d y}{d t}=\left(\cos \frac{\pi}{6}\right)(2) \\
& \frac{d y}{d t}=\frac{\sqrt{3}}{2 x} \cdot x \\
& \frac{d y}{d t}=\sqrt{3}
\end{aligned}
$$

