Relationship Between Continuity and Differentiability

A function is continuous at $x=a$ if:
a) $f(a)$ exists function value
b) $\lim _{x \rightarrow a} f(x)$ exists
c) $\lim _{x \rightarrow a} f(x)=f(a)$

A function is differentiable at $x=a$ if:
a) $f(a)$ is continuous
b) $f^{\prime}(a)=f^{\prime}(a)$

Geometric conditions that prevent a function from being differentiable at a point :
a) Any point of discontinuity (asymptote, deleted point)
b) Corner point

c) Cusp

A function that is continuous and differentiable.
$f(x)=x^{2}$
$\lim _{x \rightarrow 0^{-}} x^{2}=0^{2}=0$
$f^{\prime}(x)=2 x$
$\lim _{x \rightarrow 0^{+}} x^{2}=0^{2}=0$
$f^{\prime}(0)=2(0)=0$
$\lim _{x \rightarrow 0} x^{2}=0$
$f^{\prime}(0)=2(0)=0$

$f(0)=0^{2}=0$
$f^{\prime}(0)=\bigcirc$
$f(0)=\lim$ $x \rightarrow 0$
continuous
differ esistiable
at $x=0$

A function that is continuous but not differentiable.

$$
f(x)= \begin{cases}5-2 x & \text { for } x<3 \\ 4 x-13 & \text { for } x \geq 3\end{cases}
$$

$$
\begin{aligned}
& \lim _{x \rightarrow 3^{-}} f(x)=5-2(3)=-1 \\
& \lim _{x \rightarrow 3^{+}} f(x)=4(3)-13=-1 \\
& \lim _{x \rightarrow 3} f(x)=-1 \\
& f(3)=-4(3)-13=-1 \\
& f(3)=\lim _{x \rightarrow 3}
\end{aligned}
$$

$$
f^{\prime}(x)=\left\{\begin{array}{cc}
-2 & x<3 \\
4 & x>3
\end{array}\right.
$$

$$
f^{\prime}(3)=-2
$$

$$
f^{\prime}(3)=D N \Sigma
$$

continuous

A function that is continuous but not differentiable.

$$
f(x)=|x|
$$

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{-}}|x|=|0|=0 \\
& \lim _{x \rightarrow 0^{+}}|x|=|0|=0 \\
& \lim _{x \rightarrow 0}|x|=0 \\
& f(0)=|0|=0 \\
& f(\Delta)=\lim _{x \rightarrow 0}
\end{aligned}
$$

$$
f^{\prime}(x)=\left\{\begin{array}{cl}
1 & x>0 \\
-1 & x<0
\end{array}\right.
$$

$$
f^{\prime}(0)=-1
$$

$$
f_{+}^{\prime}(0)=1
$$

$$
f^{\prime}(0)=D N \varepsilon
$$

cantinurus
rot differentiable at $x=0$

A function that is continuous but not differentiable.
$f(x)=x^{\frac{2}{3}}$

$$
\begin{array}{ll}
\lim _{x \rightarrow 0^{-}} x^{\frac{2}{3}}=0^{\frac{2}{3}}=0 & f^{\prime}(x)=\frac{2}{3} x^{-\frac{1}{3}}=\frac{2}{3 \sqrt[3]{x}} \\
\lim _{x \rightarrow 0^{+}} x^{\frac{2}{3}}=0^{\frac{2}{3}}=0 & f^{\prime}(0)=\frac{2}{3 \sqrt[3]{0}}=u N d e f . \\
\lim _{x \rightarrow 0} x^{\frac{2}{3}}=0 & f^{\prime}(0)=4 N \text { def. } \\
f(0)=0^{\frac{2}{3}}=0 & f^{\prime}(0)=\text { DNa } \\
f(0\rangle=\lim _{x \rightarrow 0} & \text { Not diffcrentralale at } x=0 \\
\text { continuous } &
\end{array}
$$

A function that is not continuous and therefore not differentiable.

$$
\begin{array}{ll}
f(x)=\frac{1}{x} & f(x\rangle=x^{-1} \\
\lim _{x \rightarrow 0^{-}} \frac{1}{x}=\frac{1}{x=-.1}=-\infty & f^{\prime}(x)=-1 x^{-2}=\frac{-1}{x^{2}} \\
\lim _{x \rightarrow 0^{+}} \frac{1}{x}=\frac{1}{.1}=+\infty & f^{\prime}(0)=-\frac{1}{0^{2}}=u n d=f \\
x-.1 & f^{\prime}(0)=\text { undef }
\end{array}
$$

$\lim _{x \rightarrow 0} \frac{1}{x}=D \mathbb{N} \Sigma$
$f(0)=\frac{1}{0}$ under $f^{\prime}(0)=$ DNE not rant.

If a function is differentiable at a point, then it is continuous at that point.
If a function is not continuous at a point, then it is not differentiable at that point.

1. $f^{\prime}(1)$ exists. Find the values of a and b.

$$
f(x)=\left\{\begin{array}{ll}
x^{2} & \text { for } x<1 \\
a x+b & \text { for } x \geq 1
\end{array} \longleftarrow\right.
$$

$$
x^{2}=a x+b
$$

$$
1^{z}=a(1)+b
$$

$$
1=a+b
$$

$$
\begin{array}{ll}
f^{\prime}\langle x\rangle= \begin{cases}2 x \\
a & \\
2 x=a & 1=2+b \\
2\langle 1\rangle=a & -2-2 \\
a=2 & b=-1\end{cases}
\end{array}
$$

2. $f(x)$ is continuous and differentiable. Find the values of a and b.

$$
\begin{aligned}
& f(x)=\left\{\begin{array}{ll}
a x^{3}-4 x & \text { for } x \leq 1 \\
b x^{2}+2 & \text { for } x>1
\end{array} \quad \quad f^{\prime}(x)=\left\{\begin{array}{l}
3 a x^{2}-4 \\
2 b x
\end{array}\right.\right. \\
& a x^{3}-4 x=b x^{2}+2 \\
& a(1)^{3}-4(1)=b(1)^{2}+2 \quad 3 a x^{2}-4=2 b x \\
& a-4=b+2 \quad 3 a(1)^{2}-4=2 b(1) \\
& a=b+b \\
& -b+4-b+4 \\
& a-b=4 \\
& 3 a-4=2 b \\
& a=-1-1+b \\
& a=-8
\end{aligned}
$$

3. Determine if $f(x)$ is continuous and differentiable at $x=2$.

$$
\begin{aligned}
& f(x)= \begin{cases}x^{2}+4 & \text { for } x<2 \longleftarrow \\
3 x+2 & \text { for } x \geq 2 \longleftarrow\end{cases} \\
& \lim _{x \rightarrow 2^{-}} 2^{2}+4=4+4=8 \\
& \lim _{x \rightarrow 2^{+}} 3(2)+2=4+2=8 \\
& \lim _{x \rightarrow 2} 8 \\
& f(2)=3(2)+2=8 \\
& \operatorname{CON+NWOL5}
\end{aligned}
$$

$$
f^{\prime}(x)= \begin{cases}2 x & x<2 \\ 3 & x>2\end{cases}
$$

