Relationship Between Continuity and Differentiability

A function is differentiable at x = a if: a) f(a) is continuous b) f'(a) = f'(a)

Geometric conditions that prevent a function from being differentiable at a point :

a) Any point of discontinuity (asymptote, deleted point)

b) Corner point 🔨

c) Cusp

<u>A function that is continuous and differentiable</u>. $f(x) = x^2$

$$f(x) = x^{2}$$

FLO)= lim x=0 continuous	differentiable at x=0
$f(0) = \mathbf{O}^{\mathbf{L}} = \mathbf{O}$	$f'(0) = \bigcirc$
$\lim_{x\to 0} x^2 = \mathbf{i}$	f'(0) = 2(0) = 0
$\lim_{x\to 0^+} x^2 = 0^{T} = 0$	f'(0) = 200 = 0
$\lim_{x\to 0^-} x^2 = 0^2 = 0$	$f'(x) = 2 \mathbf{X}$

	/
-5	5
	5

A function that is continuous but not differentiable.

 $f(x) = \begin{cases} 5-2x & \text{for } x < 3 \\ 4x-13 & \text{for } x \ge 3 \end{cases}$

<u>A function that is continuous but not differentiable.</u> f(x) = |x|

		[]	05%				
$\lim_{x \to 0^{-}} x = 0 - 0$	f'(x) =	-1	x < 0		-5		
$\lim_{x \to 0^+} x = 0\rangle = 0$	f'(0) =	- \					
$\lim_{x \to 0} x = $	_						
f(0)= \0\= 0	$f'(0) = {}^{+}$	I					
F(0)= 11m	f'(0) =	DNS	_				
T-D CONTINUEUS	rat	9.11	cr r nd ral	ole	σ_{f}	X :	م=

A function that is continuous but not differentiable.

$$f(x) = x^{\frac{2}{3}}$$

$$\lim_{x \to 0^{+}} x^{\frac{2}{3}} = 0^{\frac{2}{3}} = 0 \qquad f'(x) = \frac{2}{3}x^{-\frac{1}{3}} = \frac{2}{3\sqrt[3]{x}}$$

$$\lim_{x \to 0^{+}} x^{\frac{2}{3}} = 0^{\frac{2}{3}} = 0 \qquad f'(0) = \frac{2}{3\sqrt[3]{0}} = \text{undef.}$$

$$\lim_{x \to 0} x^{\frac{2}{3}} = 0 \qquad f'(0) = \text{undef.}$$

$$f(0) = 0^{\frac{2}{3}} = 0 \qquad f'(0) = \text{DNE}$$

$$f(0) = 1 \text{undef.}$$

$$f(0) = 1 \text{undef.}$$

$$f(0) = 0 \text{undef.}$$

$$f(0) = 0^{\frac{2}{3}} = 0 \qquad f'(0) = \text{DNE}$$

$$f(0) = 1 \text{undef.}$$

$$f(0) = 1 \text{undef.}$$

A function that is not continuous and therefore not differentiable.

$$f(x) = \frac{1}{x}$$

$$f(x) = \frac{1}{x}$$

$$f(x) = \frac{1}{x}$$

$$f(x) = -1 \quad x^{-2} = \frac{-1}{x^{2}}$$

$$x = -.1$$

$$f'(0) = -\frac{1}{9^{2}} = u u def$$

$$f'(0) = u u def$$

$$\lim_{x \to 0^{+}} \frac{1}{x} = D \quad u u def$$

$$f'(0) = u u def$$

$$f'(0) = u u def$$

$$f'(0) = D \quad u u def$$

$$f'(0) = D \quad u u def$$

$$f'(0) = D \quad u u def$$

$$u u def$$

$$f'(0) = D \quad u u def$$

$$u u def$$

$$u u def$$

If a function is differentiable at a point, then it is continuous at that point.

If a function is not continuous at a point, then it is not differentiable at that point.

2. f(x) is continuous and differentiable. Find the values of a and b.

$$f(x) = \begin{cases} ax^{3} - 4x & \text{for } x \le 1 \\ bx^{2} + 2 & \text{for } x > 1 \end{cases} \qquad f'(x) = \begin{cases} 3 a x^{2} - 4 \\ 2 b x \end{cases}$$

$$c_{1}x^{3} - 4x = b x^{2} + 2$$

$$a(1)^{3} - 4(1) = b(1)^{2} + 2 \qquad 3 a x^{2} - 4 = 2b \\ a - 4 = b + 2 \qquad 3a(1)^{2} - 4 = 2b(1) \\ -b + 4 - b = 14 \qquad 3a - 4 = 2b \end{cases} \qquad a = -14 + 6 \\ a - b = 6 \qquad 3(b + 6) - 4 = 2b \qquad a = -14 + 6 \\ a - b = 6 \qquad 3(b + 6) - 4 = 2b \qquad a = -14 + 6 \\ a - b = 6 \qquad 3(b + 6) - 4 = 2b \qquad a = -14 + 6 \\ a - b = 6 \qquad 3(b + 6) - 4 = 2b \qquad a = -14 + 6 \\ a - b = 6 \qquad 3(b + 6) - 4 = 2b \qquad a = -14 \\ a - b = 6 \qquad 3(b + 6) - 4 = 2b \qquad a = -14 \\ a - b = -14 \qquad a = -14 \\ a - b = -14 \qquad a = -14 \\ a = -14$$

3. Determine if $f(x)$ is continuous and differentiable $f(x) = \begin{cases} x^2 + 4 & \text{for } x < 2 \\ 3x + 2 & \text{for } x \ge 2 \end{cases}$	at $x=2$. $f'(x) = \begin{cases} 2x & x < 2 \\ 3 & x > 2 \end{cases}$
$x \rightarrow 2^{2}$ + $y = 1 + y = 8$	f'(x) = 2(x) = 4
$\lim_{x \to 2^+} 3(2) + 2 = 4 + 2 = 8$	F'(z) = 3 +
$\lim_{x \to 2} 8$ $F(z) = 3(z) + z = 8$ $[CON + IN NOUS]$	f'(2)= dNE Not differentiable