Finding Volumes of
Solids Using the Disk
Method

Vertical Disks: Volume $=\int_{a}^{b} \pi(\text { Radius Function })^{2} d x \quad$ \}
Horizontal Disks: Volume $=\int_{c}^{d} \pi(\text { Radius Function })^{2} d y \longrightarrow$

1. Find the volume of the solid generated by revolving the region bounded by $y=\sqrt{x}, 0 \leq x \leq 4$ and the x-axis about the x-axis.

$$
\begin{aligned}
& \int_{a}^{12} \pi R^{2} d x \quad R=\sqrt{x}-0=\sqrt{x} \\
& \int_{0}^{4} \pi(\sqrt{x})^{2} d x=\int_{0}^{4} \pi x d x=\left.\pi \frac{x^{2}}{2}\right|_{0} ^{4} \\
& \pi\left[\frac{4^{2}}{2}-\frac{0^{3}}{2}\right]=\pi(8)=8 \pi
\end{aligned}
$$

2. Find the volume of the solid generated by revolving the region bounded by $y=\sqrt{x}$ and the lines $x=1$ and $x=4$ about the line $y=1$.

$$
\begin{aligned}
& \int_{a}^{b} \pi R^{2} d x \quad R=\sqrt{x}-1 \\
& \int_{1}^{4} \pi(\sqrt{x}-1)^{2} d x=\int_{1}^{4} \pi(\sqrt{x}-1)(\sqrt{x}-1) d x \\
& \int_{1}^{4} \pi(x-\sqrt{x}-\sqrt{x}+1) d x=\int_{1}^{4} \pi(x-2 \sqrt{x}+1) d x \\
& \int_{1}^{4} \pi\left(x-2 x^{\frac{1}{2}}+1\right) d x \\
& \left.\pi\left[\frac{x^{2}}{2}-\frac{2 x^{\frac{3}{2}}}{\frac{3}{2}}+x\right]\right|_{1} ^{4}=\pi\left[\frac{x^{2}}{2}-\frac{41}{3} x^{3 / 2}+x\right]_{1}^{4}=\pi\left[\left(\frac{4^{2}}{2}-\frac{4}{3} \cdot v^{8}+4\right)-\left(\frac{1}{2}-\frac{4}{3} \cdot 2^{2}+1\right)\right. \\
& \pi\left[8-\frac{32}{3}+4-\frac{1}{2}+\frac{4}{3}-1\right]=\pi\left[\frac{11^{6}}{1 \cdot 6}-\frac{28^{2}}{3 \cdot 2}-\frac{1 \cdot 3}{2 \cdot 3}\right]=\pi\left[\frac{66-56-3}{6}\right]=\frac{7 \pi}{6}
\end{aligned}
$$

3. The region between the curve $x=\frac{2}{y}, 1 \leq y \leq 4$ and the y-axis is revolved about the y-axis to generate a solid. Find the volume.

$$
\int_{c}^{d} \pi R^{2} d y \quad R=\frac{2}{y}-0
$$

$$
\begin{aligned}
& \frac{x y}{x}=\frac{2}{x} \\
& y=\frac{2}{x}
\end{aligned}
$$

$$
\int_{1}^{4} \pi\left(\frac{2}{y}\right)^{2} d y=\int_{1}^{4} \pi \cdot \frac{4}{y^{2}} d y
$$

$$
\int_{1}^{4} 4 \pi y^{-3} d y=\left.4 \pi \cdot \frac{y^{-1}}{-1}\right|_{1} ^{4}=\left.\frac{-4 \pi}{y}\right|_{1} ^{4} \square
$$

$$
\begin{gathered}
-4 \pi\left[\begin{array}{c}
\frac{1}{4}-\frac{1.4}{1 \cdot 4} \\
\mathrm{LCD}=4
\end{array}\right]=-4 \pi\left[\frac{1-4}{4}\right]=-4 \pi \cdot \frac{-3}{4}=3 \pi \\
\hline
\end{gathered}
$$

