Finding Volumes of
Solids Using the
Washer Method
Radius of outer Function

Vertical Washers: Volume $=\int_{a}^{b} \pi\left(R^{2}(x)-r^{2}(x)\right) d x$
Horizontal Washers: Volume $=\int_{c}^{d} \pi\left(R^{2}(y)-r^{2}(y)\right) d y$

1. The region bounded by the curve $y=x^{2}+1$ and the line $y=-x+3$
is revolved about the x-axis to generate a solid. Find the volume.

$$
\begin{aligned}
& \int_{a}^{b} \pi\left[R^{2}\langle x\rangle-r^{2}[x\rangle\right] d x \quad \begin{array}{rl}
d & R-x+3-0 \\
& =-x+3
\end{array} \\
& r=x^{2}+1-0 \\
& =x^{2}+1 \\
& \int^{1} \pi\left[(-x+3)^{2}-\left(x^{2}+1\right)^{2}\right] d x \\
& (-x+3)(-x+3) \quad\left(x^{2}+1\right)\left(x^{2}+1\right) \\
& x^{2}-3 x-3 x+4 \quad x^{4}+x^{2}+x^{2}+1 \\
& x^{2}-6 x+4 \quad x^{4}+2 x^{2}+1 \\
& x^{2}-6 x+4-\left[x^{4}+2 x^{2}+1\right) \\
& x^{2}-6 x+9-x^{4}-2 x^{2}-1 \\
& -x^{4}-x^{2}-6 x+8 \\
& \begin{array}{l}
\int_{-2}^{1} \pi\left(-x^{4}-x^{2}-6 x+8\right) d x=\left.\pi\left(\frac{-x^{5}}{5}-\frac{x^{3}}{3}-\frac{6 x^{2}}{3}+8 x\right)\right|_{-2} ^{1} \\
\pi\left[\left(-\frac{1}{5}-\frac{1}{3}-3+8\right)-\left(\frac{32}{5}+\frac{8}{3}-12-16\right)\right]=\pi\left[\frac{3}{3} \cdot \frac{1}{5}-\frac{1.5}{3}+\frac{5}{1 \cdot 15}-\frac{32^{3}}{53}-\frac{8}{3}+\frac{2}{15} \cdot \frac{2}{5}\right.
\end{array} \\
& \pi\left[\frac{-3-5+75-96-40+420}{15}\right]=\pi \cdot \frac{351}{15} \div 3=\frac{117 \pi}{5} \\
& x^{2}+x-2=0 \\
& (x+2)(x-1)=0 \\
& x=-2 \quad x=1 \\
& x^{2}+1=-x+3
\end{aligned}
$$

2. The region bounded by the parabola $y=x^{2}$, and the line $y=2 x$ in the first quadrant is revolved about the y-axis to generate a solid. Find the volume.

$$
\begin{aligned}
\int_{c}^{d} \pi\left(R^{2}(y)-r^{2}(y)\right) d y & R
\end{aligned}=\sqrt{y}-0 .
$$

$$
\int_{0}^{4} \pi\left[(\sqrt{y})^{2}-\left(\frac{y}{2}\right)^{2}\right] d y
$$

$$
\pi\left[\begin{array}{c}
\left.\left(8-\frac{64}{12}\right)-\left(\frac{\square}{2}-\frac{0}{12}\right)\right]=\pi\binom{12.8-\frac{64}{12.1}}{\angle C D=12}=\pi\binom{y=0 \quad y}{\frac{96-64}{12}}
\end{array}\right.
$$

$$
=\pi \frac{32}{12} \div 4=\frac{8 \pi}{3}
$$

3. The region between the parabola $y=x^{2}$ and the line $y=2 x$, in the first quadrant is revolved about the line $x=2$, to generate a solid. Find the volume.

$$
\begin{aligned}
& y=x^{2}=z^{2}=4 \\
& y=2 x=2 \cdot 2=4 \\
& (2,4) \\
& \int_{c}^{d} \pi\left[R^{2}(y)-r^{2}(y)\right] d y \quad R=2-\frac{y}{2} \\
& \int_{0}^{4} \pi\left[\left(2-\frac{y}{2}\right)^{2}-(2-\sqrt{y})^{2}\right] \\
& \left(2-\frac{y}{2}\right)\left(2-\frac{y}{2}\right) \quad(2-\sqrt{y})(2-\sqrt{y}) \\
& \begin{array}{ll}
4-y-y+\frac{y^{2}}{4} \quad & 4-2 \sqrt{y}-2 \sqrt{y}+y \\
& 4-4 \sqrt{y}+y
\end{array} \\
& 4-2 y+\frac{y^{2}}{y} \\
& 4-2 y+\frac{y^{2}}{4}-(4-4 \sqrt{y}+y) \\
& x-2 y+\frac{y^{2}}{4}-x y+4 \sqrt{y}-y \\
& -3 y+\frac{y^{2}}{4}+4 \sqrt{y} \\
& \int_{0}^{4} \pi\left[-3 y+\frac{y^{2}}{4}+4 y^{\frac{1}{2}}\right] d y=\left.\pi\left[\frac{-3 y^{2}}{2}+\frac{y^{3}}{12}+\frac{4 y^{3 / 2}}{3 / 2}\right]\right|_{0} ^{4} \\
& \left.\pi\left[\frac{-3 y^{2}}{2}+\frac{y^{3}}{12}+\frac{8}{3} y^{3 / 2}\right]\right|_{0} ^{4}=\pi\left[\left(-\frac{48}{2}+\frac{64}{12}+\frac{8}{3} \cdot 8\right)-\left(\frac{0}{2}+\frac{0}{12}+\frac{8}{3}(0)\right)\right] \\
& \pi\left[\frac{-24}{1.12}+\frac{64}{12}+\frac{64}{3.4}\right]^{4}=\pi\left[\frac{-288+64+256}{12}\right]=\pi \cdot \frac{32}{12} \\
& \angle C D=12 \\
& \pi \cdot \frac{32 \div 4}{12 \div 4} \div \frac{8 \pi}{3}
\end{aligned}
$$

