Arc Length

If a function is continuous on $[a, b]$ then the length of the curve from a to b is:

$$
L=\int_{a}^{b} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x
$$

If a function is continuous on $[c, d]$ then the length of the curve from c to d is:

$$
L=\int_{c}^{d} \sqrt{1+\left(\frac{d x}{d y}\right)^{2}} d y
$$

Directions: Find the length of each curve.

1. $y=\frac{x^{3}}{3}+\frac{1}{4 x}, 1 \leq x \leq 3$
$y=\frac{1}{3} x^{3}+\frac{1}{4} x^{-1}$

$$
y^{\prime}=x^{2}-\frac{1}{4} x^{-2}=x^{2}-\frac{1}{4 x^{2}}=\frac{4 x^{4}-1}{4 x^{2}}
$$

$\left(y^{\prime}\right)^{2}=\left(\frac{4 x^{4}-1}{4 x^{2}}\right)^{2}=\frac{16 x^{5}-8 x^{4}+1}{16 x^{4}}$
$\int_{0}^{3} \sqrt{1+\frac{16 x^{2}-8 x^{4}+1}{16 x^{4}}} d x=\int_{1}^{3} \sqrt{\frac{16 x^{4}+16 x^{8}-8 x^{4}+1}{16 x^{4}}} d x=\int_{1}^{3} \sqrt{\frac{16 x^{8}+8 x^{4}+1}{16 x^{4}}} d x$
$\int_{1}^{3} \sqrt{\frac{\left(4 x^{4}+1\right)^{2}}{16 x^{4}}} d x=\int_{1}^{3} \frac{4 x^{4}+1}{4 x^{2}} d x=\int_{1}^{3} \frac{4 x^{4}}{4 x^{2}}+\frac{1}{4 x^{2}} d x=\int_{1}^{3} x^{2}+\frac{1}{4} x^{-2} d x$
$\left.\frac{x^{3}}{3}-\frac{1}{4} x^{-1}=\frac{x^{3}}{3}-\frac{1}{4 x}\right]_{1}^{3}=\left(\frac{27}{3}-\frac{1}{12}\right)-\left(\frac{1}{3}-\frac{1}{4}\right)=9-\frac{1}{12}-\frac{1}{3}+\frac{1}{4}$

$$
\frac{108-1-4+3}{12}=\frac{106}{12}=\frac{53}{6} \text { or } 8.8 \overline{3}
$$

$$
\begin{aligned}
& \text { 2. } y=\ln (\sin x), \frac{\pi}{4} \leq x \leq \frac{2 \pi}{3} \\
& y^{\prime}=\frac{1}{\sin x} \cdot \cos x=\cot x \\
& \left(y^{\prime}\right)^{2}=\cot ^{2} x \\
& \int_{\pi / 4}^{\frac{2 \pi}{3}} \sqrt[\underbrace{\csc ^{2} x}]{\underbrace{1+\cot ^{2} x}} d x \\
& \frac{\sin ^{2} x}{\sin ^{2} x}+\frac{\cos ^{2} x}{\sin ^{2} x}=\frac{1}{\sin ^{2} x} \\
& 1+\cot ^{2} x=\csc ^{2} x \\
& \int_{\pi / 4}^{\frac{2 \pi}{3}} \sqrt{\csc ^{2} x} d x=\int_{\frac{\pi}{4}}^{\frac{2 \pi}{3}} \csc x d x=\int_{\frac{\pi}{4}}^{\frac{2 \pi}{3}} \csc x \cdot \frac{\csc x-\cot x}{\csc x-\cot x} d x \\
& \left.\int_{\frac{\pi}{4}}^{\frac{2 \pi}{3}} \frac{\csc ^{2} x-\csc x \cot x}{\csc x-\cot x} d x=\int_{\pi / 4}^{\frac{2 \pi}{3}} \frac{1}{4} d u=|N| u|=|N| \csc x-\cot x|\right\}_{\frac{\pi}{4}}^{\frac{2 \pi}{3}} \\
& u=\csc x-\cot x \\
& d u=-\csc x \cot x+\csc ^{2} x d x \\
& 1 N\left|\frac{2}{\sqrt{3}}+\frac{1}{\sqrt{3}}\right|-\ln |\sqrt{2}-1|=1 N \frac{3}{\sqrt{3}}-\ln (\sqrt{2}-1)=\ln \left(\frac{3}{\sqrt{3}} \div \frac{\sqrt{2}-1}{1}\right) \\
& \frac{3}{\sqrt{3}} \cdot \frac{1}{\sqrt{2}-1}=\frac{3}{\sqrt{6}-\sqrt{3}} \cdot \frac{\sqrt{6}+\sqrt{3}}{\sqrt{6}+\sqrt{3}}=\frac{3(\sqrt{6}+\sqrt{3})}{6-3}=\frac{3(\sqrt{6}+\sqrt{3})}{2}=\sqrt{6}+\sqrt{3} \\
& 1 N(\sqrt{6}+\sqrt{3}) \text { OR } 1.43068
\end{aligned}
$$

3. $y=\frac{3}{2} x^{\frac{2}{3}},[0,8]$

$$
\begin{aligned}
& y^{\prime}=x^{-\frac{1}{3}}=\frac{1}{x^{1 / 3}} \\
& \left(y^{\prime}\right)^{2}=\left(\frac{1}{x^{1 / 3}}\right)^{2}=\frac{1}{x^{2 / 3}} \\
& \int_{0}^{8} \sqrt{1+\frac{1}{x^{2 / 3}}} d x=\int_{0}^{8} \sqrt{\frac{x^{2 / 3}+1}{x^{2 / 3}}} d x=\int_{0}^{\frac{1}{x^{1 / 3}} \sqrt{x^{2 / 3}+1} d x=x^{2 / 3}+1} \\
& d u=\frac{2}{3} x^{-2 / 3} d x \\
& \frac{3}{2} \int_{0}^{8} \sqrt{u} d u=\frac{3}{2} \int_{c}^{8} u^{1 / 2} d u=\frac{1}{x^{1 / 3}} d x \\
& \left.\left.\left(8^{2 / 3}+1\right)^{3 / 2}-\left(0^{2 / 3}+1\right)^{3 / 2}\right]_{0}^{3 / 2}=\left(x^{2 / 3}+1\right)^{3 / 2}\right]_{0}^{8} \\
& 0
\end{aligned}
$$

4. $27 x^{3}=8 y^{2}$, from $(0,0)$ to $\left(1, \frac{3 \sqrt{6}}{4}\right)$

$$
\begin{aligned}
& 8 y^{2}=27 x^{3} \\
& \sqrt{y^{2}}=\sqrt{\frac{27 x^{3}}{8}} \\
& y= \pm \sqrt{\frac{27 x^{3}}{8}}= \pm \frac{3 \sqrt{3} x^{3 / 2}}{2 \sqrt{2}}
\end{aligned}
$$

$$
y^{\prime}=\frac{3 \sqrt{3}}{2 \sqrt{2}} \cdot \frac{3}{2} x^{1 / 2}=\frac{9 \sqrt{3}}{4 \sqrt{2}} x^{1 / 2}
$$

$$
\left(y^{\prime}\right)^{2}=\left(\frac{9 \sqrt{3}}{4 \sqrt{2}} x^{.12}\right)^{2}=\frac{81.3}{16.2} x=\frac{243}{32} x
$$

$$
\int_{0}^{1} \sqrt{1+\frac{243}{32} x} d x=\frac{32}{243} \int_{0}^{1} \sqrt{u} d u=\frac{32}{243} \int_{0}^{1} u^{1 / 2} d u=\frac{32}{243} \cdot \frac{2}{3} u^{3 / 2}
$$

$$
u=1+\frac{243}{32} x
$$

$$
\left.\frac{64}{729}\left(1+\frac{243}{32} x\right)^{3 / 2}\right]_{0}^{1}
$$

$$
\frac{32}{243} d u=d x \quad \frac{64}{729}\left[\left(1+\frac{243}{32} \cdot 1\right)^{3 / 2}-\left(1+\frac{243}{32} \cdot 0\right)^{3 / 2}\right]
$$

$$
\frac{64}{729}\left[\left(\frac{275}{32}\right)^{3 / 2}-1^{3 / 2}\right]=\frac{64}{724}\left[\left(\frac{5 \sqrt{11}}{4 \sqrt{2}}\right)^{3}-1\right]=\frac{64}{729}\left[\frac{1375 \sqrt{11}}{128 \sqrt{2}}-1\right]
$$

$$
5 \sqrt{11} \cdot 5 \sqrt{11} \cdot 5 \sqrt{11} \quad 4 \sqrt{2} \cdot 4 \sqrt{2} \cdot 4 \sqrt{2}
$$

$$
25 \cdot 11.5 \sqrt{11} \quad 16.2 \cdot 4 \sqrt{2}
$$

$$
1375 \sqrt{11} \quad 128 \sqrt{2}
$$

$$
\frac{1375 \sqrt{11}}{128 \sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}=\frac{1375 \sqrt{22}}{256} \quad \frac{64}{729}\left[\frac{1375 \sqrt{22}}{256}-1\right]
$$

$$
\frac{64}{729}\left[\frac{1375 \sqrt{22}-256}{3564}\right]=\frac{1375 \sqrt{22}-256}{2916} \text { OR 2.12391}
$$

On Integrate with respect to y

$$
\begin{aligned}
& \frac{27 x^{3}}{27}=\frac{8 y^{2}}{27} \quad(0,0) \text { to }\left(1, \frac{3 \sqrt{6}}{4}\right) \\
& \sqrt[3]{x^{3}}=\sqrt[3]{\frac{8 y^{2}}{27}} \\
& x=\sqrt[3]{\frac{8 y^{2}}{27}}=\frac{2 y^{2 / 3}}{3}=\frac{2}{3} y^{2 / 3} \\
& x^{\prime}=\frac{4}{9} y^{-1 / 3}=\frac{4}{9 y^{1 / 3}} \\
& \left(x^{\prime}\right)^{2}=\left(\frac{4}{9 y^{1 / 3}}\right)^{2}=\frac{16}{81 y^{2 / 3}} \\
& \int_{0}^{\frac{3 \sqrt{6}}{4}} \sqrt{1+\frac{16}{81 y^{2 / 3}}} d y=\int_{0}^{\frac{3 \sqrt{6}}{4}} \sqrt{\frac{81 y^{2 / 3}+16}{81 y^{2 / 3}}} d y=\int_{0}^{\frac{3 \sqrt{6}}{4}} \frac{1}{9 y^{1 / 3}} \sqrt{81 y^{2 / 3}+16} d y \\
& d u=54 y^{-1 / 3} d y \\
& \left.\frac{1}{54} \cdot \frac{1}{9} \int_{0}^{\frac{3 \sqrt{6}}{4}} \sqrt{u} d u=\frac{1}{486} \int_{0}^{\frac{3 \sqrt{6}}{4}} u^{1 / 2} d u=\frac{1}{\frac{4846}{243}} \cdot \frac{-2}{3} u^{\frac{1}{54} d u}=\frac{1}{729}\left(81 y^{2 / 3}+16\right)^{3 / 2}\right]_{0}^{\frac{3 \sqrt{6}}{4}} \\
& \frac{1}{729}\left[\left[81 \cdot\left(\frac{3 \sqrt{6}}{4}\right)^{2 / 3}+16\right]_{3}^{3 / 2}-\left[81 \cdot 0^{2 / 3}+16\right]^{3 / 2}\right\} \\
& \frac{3 \sqrt{6}}{4} \cdot \frac{3 \sqrt{6}}{4}=\frac{9 \cdot x^{3}}{4 x_{8}}=\frac{27}{8} \\
& \sqrt[3]{\frac{27}{8}}=\frac{3}{2} \\
& \frac{1}{729}\left[\left(81 \cdot \frac{3}{2}+16\right)^{3 / 2}-16^{3 / 2}\right]=\frac{1}{729}\left[\left(\frac{275}{2}\right)^{3 / 2}-16^{3 / 2}\right] \\
& \frac{1}{729}\left[\left(\frac{5 \sqrt{11}}{\sqrt{2}}\right)^{3}-64\right]=\frac{1}{729}\left[\frac{1375 \sqrt{11}}{2 \sqrt{2}}-64\right]=\frac{1}{729}\left[\frac{1375 \sqrt{22}}{4}-64\right] \\
& \frac{1}{729}\left[\frac{1375 \sqrt{22}-256}{4}\right]=\sqrt{\frac{375 \sqrt{22}-256}{2916} \text { OR } 2.12391}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 5. } x=\frac{y^{3}}{2}+\frac{1}{6 y}, 1 \leq y \leq 3 \\
& x=\frac{1}{2} y^{3}+\frac{1}{6} y^{-1} \\
& x^{1}=\frac{3}{2} y^{2}-\frac{1}{6} y^{-2}=\frac{3 y^{2}}{2}-\frac{1}{6 y^{2}}=\frac{9 y^{4}-1}{6 y^{2}} \\
& \left(x^{\prime}\right)^{2}=\left(\frac{9 y^{4}-1}{6 y^{2}}\right)^{2}=\frac{81 y^{8}-18 y^{4}+1}{36 y^{4}} \\
& \int_{1}^{3} \sqrt{1+\frac{81 y^{8}-18 y^{4}+1}{36 y^{4}}} d y=\int_{1}^{3} \sqrt{\frac{36 y^{4}+81 y^{8}-18 y^{4}+1}{36 y^{4}}} d y \\
& \int_{1}^{3} \sqrt{\frac{81 y^{4}+18 y^{4}+1}{36 y^{4}}} d y=\int_{1}^{3} \sqrt{\frac{\left(9 y^{4}+1\right)^{2}}{36 y^{4}}} d y=\int_{1}^{3} \frac{9 y^{4}+1}{6 y^{2}} d y \\
& \left.\int_{1}^{3} \frac{9 y^{4}}{6 y^{2}}+\frac{1}{6 y^{2}} d y=\int_{1}^{3} \frac{3}{2} y^{2}+\frac{1}{6} y^{-2} d y=\frac{3}{2} \cdot \frac{1}{2} y^{3}-\frac{1}{6} y^{-1}\right]_{1}^{3} \\
& \left.\frac{y^{3}}{2}-\frac{1}{6 y}\right]_{1}^{3}=\left(\frac{27}{2}-\frac{1}{18}\right)-\left(\frac{1}{2}-\frac{1}{6}\right)=\frac{27}{2}-\frac{1}{18}-\frac{1}{2}+\frac{1}{6} \\
& \frac{243-1-9+3}{18}=\frac{236}{18}=\frac{118}{9} \text { OR } 13.1
\end{aligned}
$$

