Congruent Triangles

Congruent Triangles - Two triangles are congruent if and only if their corresponding parts are congruent.

$$
\triangle A B C \cong \triangle D E F \text { or angks }
$$

Third Angle Theorem - If two angles of one triangle are congruent to two angles of a second triangle, then the third angles of the triangles are congruent.

Properties of Congruent Triangles
Reflexive Property - Every triangle is congruent to itself.
Symmetric Property - If $\triangle A B C \cong \triangle D E F$ then $\triangle D E F \cong \triangle A B C$.
Transitive Property - If $\triangle A B C \cong \triangle D E F$ and $\triangle D E F \cong \triangle G H I$ then $\triangle A B C \cong \triangle G H I$.

1. Complete each congruence statement.
a) $\triangle A B C \cong \triangle \subset D A$

b) $\triangle A B C \cong \triangle \Sigma D C$

c) $\triangle A B C \cong \triangle \triangle E C$

2. $\triangle A B C \cong \triangle D E F$
a) If $A B=8, B C=14, A C=10$ and $D F=2 x-4$, find the value of x.

$$
\begin{aligned}
& A C=D F \\
& 10=2 x-y \\
& +4 \\
& \frac{14}{2}=\frac{2 x}{2} \\
& \frac{x}{2}=7
\end{aligned}
$$

b) If $m \measuredangle A=42^{\circ}, m \measuredangle E=60^{\circ}$ and $m \measuredangle F=3 x+18$, find the value of x.

3. If $\triangle A B C \cong \triangle D E F_{\partial} A B$ is three less than three times a number, $D E$ is five more than a number, $A C$ is five times a number_and $D F$ is twelve more than twice a number, find $A B, A C, D E$ and $D F$.

4. Given: $E D \perp A C$
B is the midpoint of $\overline{A C}$

$$
\overline{D A} \cong \overline{D C}
$$

$\overrightarrow{D E}$ bisects $\measuredangle A D C$
Prove: $\triangle A B D \cong \triangle C B D$
Statement

1. $E D \perp A C^{\bullet}$
B is the midpoint of $\overline{A C}$ •
$\overline{D A} \cong \overline{D C}$ •
$\overrightarrow{D E}$ bisects $\measuredangle A D C{ }^{\bullet}$
2) $m \times A B D=90^{\circ}$
$m \times C B D=90^{\circ}$
3) $m \& A B D=m \times \angle B D$ 4) $X A B D \cong K \subset B D$
4) $\overline{B A} \cong \overline{B C}$
5) $\triangle A D B \cong X C D B$
6) $\overline{B D} \cong \bar{\equiv} \overline{B D}$
7) $x A \cong x C$
8) $\triangle A B D \cong \triangle C B D$
9) Substitution
10) Def. of \cong Angles
11) Def. of midpoint
12) Def. of bisect
13) Reflexive
14) Third Angle Theorem a) Der. of \cong Triangles
