Isosceles Triangle - A triangle with at least two congruent sides.

Isosceles Triangle Theorem - If two sides of a triangle are congruent, then the angles opposite those sides are congruent.

Isosceles Triangle Theorem Converse - If two angles of a triangle are congruent, then the sides opposite those angles are congruent.

Corollary 1-A triangle is equilateral if and only if it is equiangular.
Corollary 2 - Each angle of an equilateral triangle measures 60°.

$180^{\circ} \div 3=60^{\circ}$

1. Find the value of x.
a)

$$
\begin{aligned}
& 180 \div 3=60^{\circ} \\
& x=60
\end{aligned}
$$

b)

c)

d)

$$
\begin{gathered}
3 x+40+2 x+2 x=180 \\
7 x+4 g=180 \\
-40-40 \\
\frac{7 x}{7}=\frac{140}{7} \\
x=20^{\circ}
\end{gathered}
$$

e)

$$
\begin{aligned}
& 180-60=120 \\
& 120 \div 2=60
\end{aligned}
$$

$$
\begin{aligned}
& 4 x=2 x+24 \\
& -2 x-2 x
\end{aligned}
$$

$$
\frac{p x}{2}=\frac{24}{2}
$$

$$
x=12
$$

2. In $\triangle A B C, \overline{A B} \cong \overline{B C}, m \measuredangle A$ is 10 more than twice a number and $m \measuredangle C$ is four less than three times the same number. Find $m \measuredangle B$.

$m x A=10+2 x=10+2(14)=38^{\circ}$ $m x c=3 x-4=3(14)-4=38^{\circ}$

$$
\begin{gathered}
m x A=m x c \\
10+2 x=3 x-4 \\
-2 x-2 x \\
10=x-y \\
+4 \\
14=x
\end{gathered}
$$

$$
38+38=76
$$

$$
180-76=104 \quad m \times B=104^{\circ}
$$

3. Write a two-column proof for each.
a) Given: $\measuredangle A B D \cong \measuredangle D C A$

$$
\overline{B A} \cong \overline{C D}
$$

Prove: $\measuredangle B C A \cong \measuredangle C B D$

Statement

1. $\measuredangle A B D \cong \measuredangle D C A$
$\overline{B A} \cong \overline{C D}$
2) $\Varangle B E A \cong X C \Sigma D$
3) $\triangle B E A \cong \triangle C E D$
4) $\overline{B E} \cong \overline{C E}$
5) $\triangle B E C$ is isos. c) $X B C A \cong \Varangle C B D$

Reason

1. Given
2) Vertisal \& Thearem
3) $A A S$

. Given
4) CPCTC
5) DCF. of lsos. \triangle b) Isos. \triangle Thearem
b) Given: $\triangle A B C$ is an isosceles triangle and $\measuredangle B$ is the vertex \bullet $\overline{D E} \| \overline{A C}$.
Prove: $\triangle D B E$ is an isosceles triangle -

Statement

1. $\triangle A B C$ is an isosceles triangle and $\measuredangle B$ is the vertex $\overline{D E} \| \overline{A C}$
2) $\overline{B A} \cong \overline{B C}$
3) $\times A \cong \times C$

4) $\frac{X B E D}{B D} \cong=\frac{X}{=} B D E$ **
5) $\triangle D B E$ is iso.

Reason

1. Given
2) Def of Isas. Δ
3) sos. Δ Theorem 4) Corresponding xis

Postulate
5) Transitive
b) Transitive
7) Ios. \triangle Theorem reverse 8) Def. of isis. Δ
c) Given: $\triangle A B C$ is an isosceles triangle and $\overline{A C}$ is the base \cdot
$\overline{D C}$ bisects $\measuredangle B C A \cdot$
$\overline{D A}$ bisects $\measuredangle B A C \cdot$
Prove: $\triangle A D C$ is an isosceles triangle

Statement

1. $\triangle A B C$ is an isosceles triangle and $\overline{A C}$ is the base

Reason

1. Given
$\overline{D C}$ bisects $\measuredangle B C A$
$\overline{D A}$ bisects $\measuredangle B A C$
2) $\overline{B A} \cong \overline{B C}$
3) Def of iss Δ
4) $\triangle B A C \cong \Varangle B C A$
5) Isos. \triangle Theorem
6) $\Varangle B A D \cong \Varangle D A C$
7) Def of bisect

8) $m x B A C=m \times B C A$ *
9) D<F of \cong f's

$$
m \times B A D=m \times D A C
$$

$m \notin B C D=m \not \subset D C A$
c) $m \times B A C=m \overline{B A D}+m \times D A C \quad A X$ Addition Post.
$m \times B C A=m \times B C D+m \times D \subset A$
7) $m \times B A D+m \times D A C=m \times B C D+m \times D \subset A \quad$ i) substit.
8) $m \times D A C+m \times D A C=m \neq D C A+m \times D C A$ e) substit.
9) $\frac{4}{\frac{1}{2}} m \times D A C=\frac{7 x}{\frac{1}{2}} m x D C A$
a) Simplify
10) $m \times D A C=m \times D C A$
10) Divas. Prop.
11) $X D A C \cong X D C A$
12) $\overline{D C} \cong \overline{D A}$
13) $\triangle D A C$ is $15 \Delta 5$.
ii) Def. of $\cong x \cdot s$
12) Isos. \triangle Theorem Converse
13) Def. of isis. Δ

