
Vectors in the Plane

Vector: A directed line segment that has a magnitude and a direction.

Initial Point: P(1,2)Terminal Point: Q(-5,-2)

Component Form of a Vector: $\mathbf{v} = \langle x_2 - x_1, y_2 - y_1 \rangle$

Linear Combination of Vectors/Standard Unit Form of a Vector: v = xi + yj

V=-60+-43

Magnitude of a vector v: $||v|| = \sqrt{x^2 + y^2}$ $||v|| = \sqrt{(-6)^2 + (-4^2)}$ $||v|| = \sqrt{36 + 16} = \sqrt{52} = \sqrt{4.13} = 2\sqrt{13}$

1. Let $u = \langle -3, 6 \rangle$ and $v = \langle 5, -7 \rangle$. Find each of the following vector operations.

$$\frac{2v}{2v} = \langle 2(5), 2(-1) \rangle$$

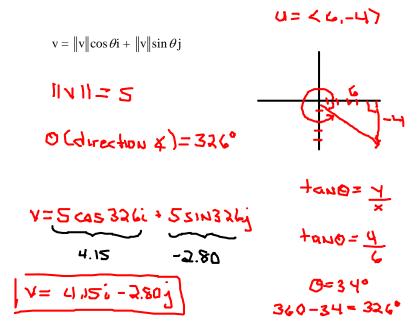
b) 3u - 4v $3u = \langle 3(-3), 3(6) \rangle$ $3u = \langle -9, 19 \rangle$ $4v = \langle 4(5), 4(-7) \rangle$ $4v = \langle 20, -28 \rangle$ $3u - 4v = \langle -9, \sqrt{8} \rangle - \langle 20, -28 \rangle$ $3u - 4v = \langle -9, \sqrt{8} \rangle - \langle 20, -28 \rangle$ $3u - 4v = \langle -9, \sqrt{8} \rangle - \langle 20, -28 \rangle$ $3u - 4v = \langle -9, \sqrt{8} \rangle - \langle 20, -28 \rangle$ 2. Find a unit vector in the direction of $v = \langle -3, 2 \rangle$.

unit vector =
$$\frac{v}{\|v\|}$$

$$||v||| = \int (-3)^{2} + (2)^{2}$$

$$= \int 9 + 4 \int 9$$

$$= \sqrt{13}$$


$$\sqrt{2} = -3 i_{1} + \frac{2}{\sqrt{13}} j$$

3. Find the direction angle of each vector.

Direction Angle:
$$\tan \theta = \frac{y}{x}$$

a)
$$u = 4i + 4j$$
 $\langle u, u \rangle$
 $tan 0 = \frac{v}{x}$
 $tan 0 = \frac{u}{u}$
 $tan 0 = 1$
 $\Theta = 45^{\circ}$
b) $v = -5i + 2j$ $v = \langle -5, 2 \rangle$
 $tan 0 = \frac{v}{x}$
 $tan 0 = \frac{v}{5}$
 $\Theta = 22^{\circ}$
 $I80 - 22 = 158^{\circ}$

4. Find the vector v with a magnitude of 5 in the same direction as u = 6i - 4j.

5. Find the magnitude and direction angle of vector v.

a)
$$v = 4(\cos 225^{\circ}i + \sin 225^{\circ}j)$$

 $V = 4(\cos 225^{\circ}i + \sin 225^{\circ}j)$
 $0 = 225^{\circ}$
 $0 = 225^{\circ}$
 $V = -3i + 4j$
 $V = -3i + 4j$

6. Use the law of cosines to find the angle between the given vectors.

$$u = 3i - 4j$$

$$v = 5i + 2j$$

$$\|u\| = \sqrt{(\frac{3}{2} + (-4)^{2}} = \sqrt{9 + 16} = \sqrt{25} = 5$$

$$\|v\| = \sqrt{(5)^{2} + (2)^{2}} = \sqrt{25 + 4} = \sqrt{29}$$

$$(-v) = \sqrt{3 - 5}, -(-4) - 2 = \sqrt{-2}, -6 = \sqrt{40}$$

$$(\sqrt{100}^{2} - (5)^{4} + (\sqrt{10}^{2} - 2(5)(\sqrt{10}) - (5)^{2} + (\sqrt{10})^{2} - 2(5)(\sqrt{10}) - (5)^{2} + (\sqrt{10}^{2} - 2(5)(\sqrt{10}) - (5)^{2} + (\sqrt{10})^{2} - 2(5)(\sqrt{10}) - (5)^{2} + (\sqrt{10}^{2} - 2(5)(\sqrt{10}) - (5)^{2} + (\sqrt{10})^{2} + (\sqrt{10})^{2} - (5)^{2} + (\sqrt{10})^{2} + (\sqrt{10})^{2$$

Г