Linear Equations in Two Variables

Slope - the ratio of the vertical rise to the horizontal run

General Form - use when asked to write the equation of a line in general form

$$Ax + By + C = 0$$

$$3x - 4y - 7 = 0$$
 $-2x - 6y = 8$

Standard Form - use when asked to write the equation of a line in standard form

$$Ax + By = C$$

$$2x - 3y = 10$$
 $-5x - y = 9$

Slope-Intercept Form - use when asked to graph a line

$$y = mx + b$$

$$y = 3x - 1$$

$$y = -x$$

$$y - y_1 = m(x - x_1)$$

Given:
$$m = \frac{1}{2}$$
, (4,-3)

Given:
$$(-5, 2)$$
, $(4, -3)$

<u>Vertical Line</u> - an equation of the form x = c

<u>Horizontal Line</u> - an equation of the form y = c

Parallel Lines - have equal slopes

$$m=2 \qquad \qquad m=0 \qquad \qquad m=-\frac{4}{3}$$

Perpendicular Lines - have negative, reciprocal slopes

$$m = 2 \qquad \qquad m = 0 \qquad \qquad m = -\frac{4}{3}$$

- 1. Write each equation in standard form and in slope-intercept form. Identify the slope and the *y*-intercept.
 - a) 6y = -2x 13

b)
$$x = \frac{2}{5}y + 7$$

c) 3x = 7y

2. Write an equation in slope-intercept form for the line that contains the given point and the given slope.

a)
$$m = -4$$
, $(-2, -5)$
b) $m = \frac{1}{3}$, $(2, -4)$

c) m = 0, (1,7)

d) m = undefined, (0, -4)

3. Write an equation in slope-intercept form for the line that contains the given points.

a) (-7, -3), (6, 8)

b) (-3,4), (-3,7)

- 4. Determine whether the lines L_1 and L_2 are parallel, perpendicular or neither.
 - a) $L_1:(4,8), (-4,2)$ $L_2:(3,-5), (-1,\frac{1}{3})$ b) $L_1:(0,-7), (2,-3)$ $L_2:(-1,-1), (5,11)$

c) $L_1:(4,1), (-4,-15)$ $L_2:(-12,-5), (6,4)$

- 5. Write the slope-intercept form of the equation of the line through the given point that is parallel and perpendicular to the given line.
 - a) Point: (-5,1)Line: x + y = 8

b) Point: (4, -3)Line: y = -7

c) Point:
$$\left(\frac{1}{2}, 2\right)$$

Line: $x = 6$