The Discriminant

Quadratic Equation - An equation of the form $ax^2 + bx + c = 0$, where *a*, *b* and *c* are real numbers and $a \neq 0$.

<u>Discriminant</u> - Determines the number and type of roots of a quadratic equation when a, b and c are rational numbers.

Quadratic Formula	Discriminant
$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	b^2-4ac

Value of the Discriminant	Number and Type of Roots
Negative	No Solution - Two Imaginary Roots
Zero	One Solution - One Real, Rational Root
Positive Perfect Square	Two Solutions - Two Real, Rational Roots
Positive Non-Perfect Square	Two Solutions - Two Real, Irrational Roots

Directions: Use the discriminant to determine the number and type of solutions to the quadratic equation.

1. $2x^2 + 6x + 3 = 0$ 2. $x^2 - 4x = -5$

3. $x^2 - 2x - 3 = 0$

4. $x^2 - 6x + 9 = 0$

5. If the roots of $x^2 + bx + 16 = 0$ are equal, then what is the value of b?

6. If the roots of $ax^2 + 6x + 4 = 0$ are imaginary, then what is the least integral value of a?

7. Find the largest integral value for k for which the roots of $2x^2 + 7x + k = 0$ are real?