Graphs of Rational Functions

$$f(x) = \frac{x^3 + 6x^2 + 11x + 6}{x^2 - 1}$$

Domain

the allowable x-values

Vertical Asymptote

set the denominator equal to zero

Hole/Open Circle/Deleted Point

set the denominator that cancels equal to zero

Horizontal Asymptote

Degree of Numerator > Degree of Denominator Horizontal Asymptote: None Degree of Numerator < Degree of Denominator Horizontal Asymptote: y = 0

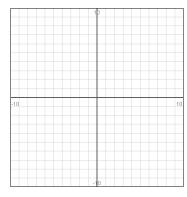
Degree of Numerator = Degree of Denominator Horizontal Asymptote: $y = \frac{\text{Leading Coefficient of Numerator}}{\text{Leading Coefficient of Denominator}}$

Slant/Oblique Asymptote

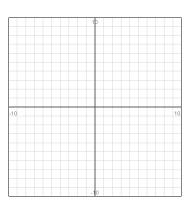
use long division only if there is no horizontal asymptote

x-intercepts

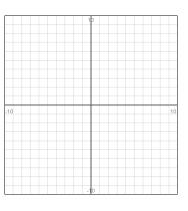
set y equal to zero and solve for x

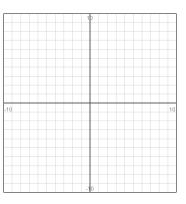

y-intercept

set x equal to zero and solve for y


Steps to Graph Rational Functions

- 1. Find the Domain.
- 2. Find all asymptotes.
- 3. Find all intercepts.
- 1. Graph each rational function.


a)
$$f(x) = \frac{x^2 + 1}{x}$$


b)
$$f(x) = \frac{x^2}{x^2 - 16}$$

c)
$$f(x) = \frac{x}{x^2 - 1}$$

$$d) f(x) = \frac{2}{x^2 + 1}$$

