Sequences

1. Write the first five terms of the sequence whose n^{th} term is shown.

a)
$$a_n = 5n - 2$$

$$b) a_n = \frac{n+2}{n^2}$$

c)
$$a_n = (-1)^{n+2}$$

2. Find the indicated term of the sequence whose n^{th} term is shown.

a)
$$a_n = \frac{n}{2} - 5$$
, $a_{12} =$

b)
$$a_n = (-1)^n (2n-1), a_{25} =$$

- 3. Write the first five terms of the sequence defined recursively.
- a) $a_1 = 10$, $a_{k+1} = a_k + 2$

b)
$$a_1 = 3$$
, $a_{k+1} = 2a_k - 1$

- 4. Write an expression for the n^{th} term of the sequence.
 - a) 2,4,8,16,...

b)
$$\frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}$$
...

d)
$$1, \frac{1}{3}, \frac{1}{9}, \frac{1}{27}, \dots$$

e)
$$-1, \frac{1}{2}, -\frac{1}{6}, \frac{1}{24}, -\frac{1}{120}, \dots$$

Sigma notation

$$\sum_{i=1}^{n} a_i = a_1 + a_2 + a_3 + \dots + a_n$$

5. Evaluate each series.

a)
$$\sum_{i=1}^{4} 4i + 2$$

b)
$$\sum_{i=1}^{5} \frac{i^2 + 3}{i}$$

6. Use sigma notation to write the sum.

a)
$$3-9+27-81+243-729$$

b)
$$\left[1 - \left(\frac{1}{8}\right)^2\right] + \left[1 - \left(\frac{2}{8}\right)^2\right] + \dots + \left[1 - \left(\frac{8}{8}\right)^2\right]$$

c)
$$\frac{1}{1 \cdot 3} + \frac{1}{2 \cdot 4} + \frac{1}{3 \cdot 5} + \frac{1}{4 \cdot 6} + \dots + \frac{1}{8 \cdot 10}$$