Relationship Between Continuity and Differentiability

A function is continuous at x = a if:

a) f(a) exists

b)
$$\lim_{x \to a} f(x)$$
 exists

c) $\lim_{x \to a} f(x) = f(a)$

A function is differentiable at x = a if:

a) f(a) is continuous

b)
$$f'(a) = f'(a)$$

Geometric conditions that prevent a function from being differentiable at a point :

a) Any point of discontinuity (asymptote, deleted point)

b) Corner point

c) Cusp

A function that is continuous and differentiable.

$$f(x) = x^2$$

$$\lim_{x \to 0^-} x^2 =$$

$$f'(x) =$$

$$\lim_{x\to 0^+} x^2 =$$

$$f'(0) = \frac{1}{2}$$

$$\lim_{x \to 0} x^2 =$$

$$f'(0) =$$

$$f(0) =$$

$$f'(0) =$$

A function that is continuous but not differentiable.

$$f(x) = \begin{cases} 5 - 2x & \text{for } x < 3 \\ 4x - 13 & \text{for } x \ge 3 \end{cases}$$

$$\lim_{x \to 3^{-}} f\left(x\right) =$$

$$f'(x) = \begin{cases} & \\ & \end{cases}$$

$$\lim_{x \to 3^+} f\left(x\right) =$$

$$f'(3) =$$

$$\lim_{x\to 3} f\left(x\right) =$$

$$f(3) =$$

$$f'(3) =$$

A function that is continuous but not differentiable.

$$f(x) = |x|$$

$$\lim_{x \to 0^{-}} |x| =$$

$$\lim_{x \to 0^+} |x| =$$

$$f'(0) = \frac{1}{2}$$

$$\lim_{x \to 0} |x| =$$

$$f'(0) =$$

$$f(0) =$$

$$f'(0) =$$

A function that is continuous but not differentiable.

$$f\left(x\right) = x^{\frac{2}{3}}$$

$$\lim_{x\to 0^-} x^{\frac{2}{3}} =$$

$$f'(x) =$$

$$\lim_{x\to 0^+} x^{\frac{2}{3}} =$$

$$\lim_{x \to 0} x^{\frac{2}{3}} =$$

$$f'(0) =$$

$$f(0) =$$

$$f'(0) =$$

A function that is not continuous and therefore not differentiable.

$$f\left(x\right) = \frac{1}{x}$$

$$\lim_{x\to 0^-}\frac{1}{x}=$$

$$f'(x) =$$

$$f'(0) =$$

$$\lim_{x\to 0^+}\frac{1}{x}=$$

$$\lim_{x\to 0}\frac{1}{x}=$$

$$f(0) =$$

If a function is differentiable at a point, then it is continuous at that point.

If a function is not continuous at a point, then it is not differentiable at that point.

1. f'(1) exists. Find the values of a and b.

$$f(x) = \begin{cases} x^2 & \text{for } x < 1\\ ax + b & \text{for } x \ge 1 \end{cases}$$

2. f(x) is continuous and differentiable. Find the values of a and b.

$$f(x) = \begin{cases} ax^3 - 4x & \text{for } x \le 1\\ bx^2 + 2 & \text{for } x > 1 \end{cases}$$

3. Determine if f(x) is continuous and differentiable at x = 2.

$$f(x) = \begin{cases} x^2 + 4 & \text{for } x < 2\\ 3x + 2 & \text{for } x \ge 2 \end{cases}$$