Rolle's Theorem

Let f be continuous on the closed interval [a,b] and differentiable on the open interval (a,b). If f(a) = f(b) then there is at least one number c in (a,b) such that f'(c) = 0.

1. Explain why Rolle's Theorem does not apply on the closed interval [a,b].

a)
$$f(x) = -|x-1|+2$$
 [-1,3]

b)
$$f(x) = \tan x \quad [-\pi, \pi]$$

c)
$$f(x) = \frac{1}{x^2}$$
 [-2,2]

d)
$$f(x) = \sqrt{(3 - x^{2/3})^3}$$
 [-2,2]

2. Find the x-intercepts of the function and show that f'(x) = 0 at some point between the x-intercepts.

$$f(x) = \frac{x^3}{3} - 3x$$

3. Determine whether Rolle's Theorem can be applied to f on the closed interval [a,b]. If Rolle's Theorem can be applied, find all values of c in the open interval (a,b) such that f'(c) = 0.

a)
$$f(x) = x^3 - x^2 - 5x - 3$$
 [-1,3]

b)
$$f(x) = x^{\frac{2}{3}} + 2$$
 [-4,4]

c)
$$f(x) = 2 - |x-1|$$
 [-4,4]

d)
$$f(x) = \frac{x^2 - 2x - 3}{x + 2}$$
 [-1,3]

e)
$$f(x) = \frac{x^2 + 2}{x}$$
 [-1,1]

f)
$$f(x) = \cos x \quad [0, 2\pi]$$

g)
$$f(x) = \sin 2x$$
 $\left[0, \frac{\pi}{2}\right]$

