Proving Statements about Angles

Properties of Angle Congruence
Reflexive - For any angle $A, \measuredangle A \cong \measuredangle A$.
Symmetric - If $\measuredangle A \cong \measuredangle B$, then $\measuredangle B \cong \measuredangle A$.
Transitive - If $\measuredangle A \cong \measuredangle B$ and $\measuredangle B \cong \measuredangle C$ then $\measuredangle A \cong \measuredangle C$.

Linear Pair Postulate - If two angles form a linear pair, then they are supplementary.

If $\measuredangle 1$ and $\measuredangle 2$ form a linear pair and $m \measuredangle 1=65^{\circ}$, find $m \measuredangle 2$.

Congruent Supplements Theorem - If two angles are supplementary to the same angle or to congruent angles, then they are congruent.

Congruent Complements Theorem - If two angles are complementary to the same angle or to congruent angles, then they are congruent.

$\underline{\text { Right Angle Congruence Theorem - All right angles are congruent. }}$

Vertical Angles Theorem - Vertical angles are congruent.

Directions: Find the measure of each numbered angle.

1. $m \measuredangle 1=3 x-14$
$m \measuredangle 2=2 x-7$

2. $m \measuredangle 1=5 x$

$$
\begin{aligned}
& m \measuredangle 2=3 x+30 \\
& m \measuredangle 3=2 x+10
\end{aligned}
$$

3. $\measuredangle 1$ and $\measuredangle 3$ are complementary
$\measuredangle 2$ and $\measuredangle 3$ are complementary
$m \npreceq 1=2 x+2$
$m \measuredangle 2=x+32$

Directions: Write a two-column proof.

Directions: Write a two-column proof.
4. Given: $m \measuredangle A B C=m \measuredangle D E F$

$$
m \measuredangle 1=m \measuredangle 3
$$

Prove: $m \npreceq 2=m \measuredangle 4$

Statement

1. $m \measuredangle A B C=m \measuredangle D E F$
$m \measuredangle 1=m \measuredangle 3$

Reason

1. Given
2. Given: $\measuredangle A B D$ and $\measuredangle C B D$ form a linear pair $\measuredangle E F H$ and $\measuredangle G F H$ form a linear pair $\measuredangle A B D \cong \measuredangle E F H$
Prove: $\measuredangle C B D \cong \measuredangle G F H$

Statement

1. $\measuredangle A B D$ and $\measuredangle C B D$ form a linear pair $\measuredangle E F H$ and $\measuredangle G F H$ form a linear pair $\measuredangle A B D \cong \measuredangle E F H$

Reason

1. Given
