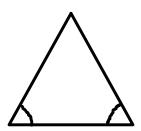
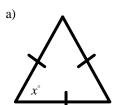

Isosceles Triangles

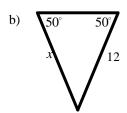

Isosceles Triangle - A triangle with at least two congruent sides.

Isosceles Triangle Theorem - If two sides of a triangle are congruent, then the angles opposite those sides are congruent.

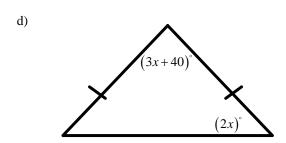


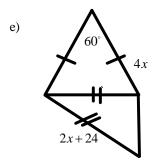
<u>Isosceles Triangle Theorem Converse</u> - If two angles of a triangle are congruent, then the sides opposite those angles are congruent.

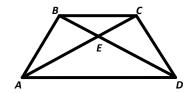



Corollary 1 - A triangle is equilateral if and only if it is equiangular.

Corollary 2 - Each angle of an equilateral triangle measures 60°.




1. Find the value of x.


2. In $\triangle ABC$, $\overline{AB} \cong \overline{BC}$, $m \measuredangle A$ is 10 more than twice a number and $m \measuredangle C$ is four less than three times the same number. Find $m \measuredangle B$.

3. Write a two-column proof for each.

a) Given: ∠ABD ≅ ∠DCA

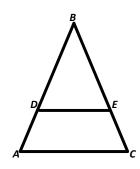
 $\overline{BA}\cong \overline{CD}$

Prove: $\angle BCA \cong \angle CBD$

<u>Statement</u>

1. *∠ABD* ≅ *∠DCA*

 $\overline{BA} \cong \overline{CD}$


 \underline{Reason}

1. Given

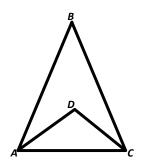
b) Given: $\triangle ABC$ is an isosceles triangle and $\angle B$ is the vertex

 $\overline{DE} \parallel \overline{AC}$

Prove: $\triangle DBE$ is an isosceles triangle

Statement

1. $\triangle ABC$ is an isosceles triangle and $\angle B$ is the vertex $\overline{DE} \parallel \overline{AC}$


Reason

1. Given

c) Given: $\triangle ABC$ is an isosceles triangle and \overline{AC} is the base

 \overline{DC} bisects $\angle BCA$ \overline{DA} bisects $\angle BAC$

Prove: $\triangle ADC$ is an isosceles triangle

<u>Statement</u>

1. $\triangle ABC$ is an isosceles triangle and \overline{AC} is the base

 \overline{DC} bisects $\angle BCA$

 \overline{DA} bisects $\angle BAC$

Reason

1. Given