Vectors in the Plane

Vector: A directed line segment that has a magnitude and a direction.

Initial Point: $P(1,2)$
Terminal Point: $Q(-5,-2)$

Component Form of a Vector: $\mathrm{v}=\left\langle x_{2}-x_{1}, y_{2}-y_{1}\right\rangle$

Linear Combination of Vectors/Standard Unit Form of a Vector: $\mathrm{v}=x \mathrm{i}+y \mathrm{j}$

Magnitude of a vector $\mathrm{v}:\|\mathrm{v}\|=\sqrt{x^{2}+y^{2}}$

1. Let $u=\langle-3,6\rangle$ and $v=\langle 5,-7\rangle$. Find each of the following vector operations.
a) 2 v
b) $3 u-4 v$
2. Find a unit vector in the direction of $v=\langle-3,2\rangle$.

$$
\text { unit vector }=\frac{\mathrm{v}}{\|\mathrm{v}\|}
$$

3. Find the direction angle of each vector.

Direction Angle: $\tan \theta=\frac{y}{x}$
a) $u=4 i+4 j$

b) $v=-5 i+2 j$

4. Find the vector v with a magnitude of 5 in the same direction as $u=6 i-4 j$.

$$
\mathrm{v}=\|\mathrm{v}\| \cos \theta \mathrm{i}+\|\mathrm{v}\| \sin \theta \mathrm{j}
$$

5. Find the magnitude and direction angle of vector v.
a) $\mathrm{v}=4\left(\cos 225^{\circ} \mathrm{i}+\sin 225^{\circ} \mathrm{j}\right)$
b) $v=-3 i+4 j$

6. Use the law of cosines to find the angle between the given vectors.

$$
\begin{aligned}
& \mathrm{u}=3 \mathrm{i}-4 \mathrm{j} \\
& \mathrm{v}=5 \mathrm{i}+2 \mathrm{j}
\end{aligned}
$$

